CSci 127: Introduction to Computer Science

CSci 127 (Hunter)

hunter.cuny.edu/csci
o
Lecture 7

DAy
June 2021 1/50

Frequently Asked Questions

From email

CSci 127 (Hunter) Lecture 7 June 2021 2 /50

Frequently Asked Questions

From email

CSci 127 (Hunter) Lecture 7 June 2021 2 /50

Frequently Asked Questions

From email

@ How do | know the height and width of an image?

CSci 127 (Hunter) Lecture 7 June 2021 2 /50

Frequently Asked Questions

From email

@ How do | know the height and width of an image?
When you read an image file using pyplot, you can access the number of rows
(height) and the number of columns (width) using the shape attribute of a numpy
array.

CSci 127 (Hunter) Lecture 7 June 2021 2 /50

Frequently Asked Questions

From email

@ How do | know the height and width of an image?
When you read an image file using pyplot, you can access the number of rows

(height) and the number of columns (width) using the shape attribute of a numpy
array.

We will start with that today.

CSci 127 (Hunter) Lecture 7 June 2021 2 /50

Frequently Asked Questions

From email

@ How do | know the height and width of an image?
When you read an image file using pyplot, you can access the number of rows
(height) and the number of columns (width) using the shape attribute of a numpy
array.
We will start with that today.

o Why are we looking at NYC historical population and CUNY enrollment data?

CSci 127 (Hunter) Lecture 7 June 2021 2 /50

Frequently Asked Questions

From email

@ How do | know the height and width of an image?
When you read an image file using pyplot, you can access the number of rows
(height) and the number of columns (width) using the shape attribute of a numpy
array.
We will start with that today.

o Why are we looking at NYC historical population and CUNY enrollment data?
We are showing you how to access and analyze data. The tools we are exploring
can be applied to many different datasets.

CSci 127 (Hunter) Lecture 7 June 2021 2 /50

Frequently Asked Questions

From email

@ How do | know the height and width of an image?
When you read an image file using pyplot, you can access the number of rows
(height) and the number of columns (width) using the shape attribute of a numpy
array.
We will start with that today.

o Why are we looking at NYC historical population and CUNY enrollment data?
We are showing you how to access and analyze data. The tools we are exploring
can be applied to many different datasets.

We will explore many more in the coming weeks!

o What is the difference between [] and ()?

CSci 127 (Hunter) Lecture 7 June 2021 2 /50

Frequently Asked Questions

From email

@ How do | know the height and width of an image?
When you read an image file using pyplot, you can access the number of rows
(height) and the number of columns (width) using the shape attribute of a numpy
array.
We will start with that today.

o Why are we looking at NYC historical population and CUNY enrollment data?
We are showing you how to access and analyze data. The tools we are exploring
can be applied to many different datasets.

We will explore many more in the coming weeks!

o What is the difference between [] and ()?
Parenthesis () generally follow function names, e.g. print().
You may also find them in mathematical and boolean expressions,
eg. (x==2%y+3))and (x <10)

CSci 127 (Hunter) Lecture 7 June 2021 2 /50

Frequently Asked Questions

From email

@ How do | know the height and width of an image?
When you read an image file using pyplot, you can access the number of rows
(height) and the number of columns (width) using the shape attribute of a numpy
array.
We will start with that today.

o Why are we looking at NYC historical population and CUNY enrollment data?
We are showing you how to access and analyze data. The tools we are exploring
can be applied to many different datasets.

We will explore many more in the coming weeks!

o What is the difference between [] and ()?
Parenthesis () generally follow function names, e.g. print().
You may also find them in mathematical and boolean expressions,
eg. (x==2%y+3))and (x <10)
We use square brackets [| to index or slice,
i.e. take a piece, of a string, list or numpy array: my_string[2:5]

CSci 127 (Hunter) Lecture 7 June 2021 2 /50

Today's Topics

o Recap: Slicing & Images

o Introduction to Functions
o NYC Open Data

CSci 127 (Hunter)

Lecture 7

A
June 2021

3/ 50

Today's Topics

o Recap: Slicing & Images
o Introduction to Functions
o NYC Open Data

CSci 127 (Hunter)

Lecture 7

June 2021

Challenge: Cropping Images

Crop an image to select the top quarter (upper left corner)

CSci 127 (Hunter)

Lecture 7

DAy
June 2021 5 /50

Challenge: Cropping Images

matplotlib.pyplot plt
numpy np
img = plt.imread(' csBridge")
plt.imshow(img)
plt.show()
height = img.shape[0]
width = img.shape[1]
img2 = img[:height//2, :width//2]
plt.imshow(img2)
plt.show()

CSci 127 (Hunter) Lecture 7 June 2021 6 /50

Challenge: Cropping Images

import matplotlib.pyplot as plt
import numpy as np

img = plt.imread('csBridge')
plt.imshow(img)

plt.show()

height = img.shape[@]

width = img.shape[1]

img2 = img[:height//2, :width//2]
plt.imshow(img2)

plt.show()

o 9 z = = 9ac

CSci 127 (Hunter) June 2021 7 /50

Lecture 7

Challenge: Cropping Images

import matplotlib.pyplot as plt — S
import numpy as np - g

img = plt.imread('csBridge')
plt.imshow(img)

plt.show()

height = img.shape[@]

width = img.shape[1]

img2 = img[:height//2, :width//2]
plt.imshow(img2)

plt.show()

o =] = =
June 2021

CSci 127 (Hunter) Lecture 7

DA
8 / 50

Challenge: Cropping Images

import matplotlib.pyplot as plt
import numpy as np

img = plt.imread('csBridge')
plt.imshow(img)

plt.show()

height = img.shape[@]

width = img.shape[1]

img2 = img[:height//2, :width//2]
plt.imshow(img2)

plt.show()

CSci 127 (Hunter)

width/2 width
0

height/2

height

o 9 z = = 9ac

Lecture 7 June 2021 9 /50

Challenge: Cropping Images

import matplotlib.pyplot as plt
import numpy as np !
img = plt.imread('csBridge')
plt.imshow(img)

plt.show() R
height = img.shape[@]

width = img.shape[1]

img2 = img[:height//2, :width//2]
plt.imshow(img2)

plt.show() height

width/2 width

o How would you select the lower left corner?

o 9 z = = 9ac

CSci 127 (Hunter) June 2021 9 /50

Lecture 7

Challenge: Cropping Images

import matplotlib.pyplot as plt
import numpy as np !
img = plt.imread('csBridge')
plt.imshow(img)

plt.show() R
height = img.shape[@]

width = img.shape[1]

img2 = img[:height//2, :width//2]
plt.imshow(img2)

plt.show() height

width/2 width

o How would you select the lower left corner?
img2 = imgl[height//2:, :width//2]

o 9 z = = 9ac

CSci 127 (Hunter) June 2021 9 /50

Lecture 7

Challenge: Cropping Images

import matplotlib.pyplot as plt
import numpy as np !
img = plt.imread('csBridge')

plt.imshow(img)

plt.show() R
height = img.shape[@]

width = img.shape[1]

img2 = img[:height//2, :width//2]
plt.imshow(img2)

plt.show() height

width/2 width

o How would you select the lower left corner?
img2 = imgl[height//2:, :width//2]

o How would you select the upper right corner?

o 9 z = = 9ac

CSci 127 (Hunter) June 2021 9 /50

Lecture 7

Challenge: Cropping Images

import matplotlib.pyplot as plt
import numpy as np !
img = plt.imread('csBridge')
plt.imshow(img)

plt.show() R
height = img.shape[@]

width = img.shape[1]

img2 = img[:height//2, :width//2]
plt.imshow(img2)

plt.show() height

o How would you select the lower left corner?
img2 = imgl[height//2:, :width//2]

o How would you select the upper right corner?
img2 = img[:height//2, width//2:]

CSci 127 (Hunter) Lecture 7

width

E z 9ace
June 2021 9 /50

Challenge: Cropping Images

import matplotlib.pyplot as plt
import numpy as np !
img = plt.imread('csBridge')
plt.imshow(img)

plt.show() R
height = img.shape[@]

width = img.shape[1]

img2 = img[:height//2, :width//2]
plt.imshow(img2)

plt.show() height

o How would you select the lower left corner?
img2 = imgl[height//2:, :width//2]

o How would you select the upper right corner?
img2 = img[:height//2, width//2:]

o How would you select the lower right corner?

CSci 127 (Hunter) Lecture 7

width

E z 9ace
June 2021 9/50

Challenge: Cropping Images

import matplotlib.pyplot as plt
import numpy as np !
img = plt.imread('csBridge')
plt.imshow(img)

plt.show() R
height = img.shape[@]

width = img.shape[1]

img2 = img[:height//2, :width//2]
plt.imshow(img2)

plt.show() height

width/2

o How would you select the lower left corner?
img2 = imgl[height//2:, :width//2]

o How would you select the upper right corner?
img2 = img[:height//2, width//2:]

o How would you select the lower right corner?
img2 = img[height//2:, width//2:]

[m] = = =
CSci 127 (Hunter) Lecture 7

June 2021

DA
9 /50

Today's Topics

o Recap: Slicing & Images

o Introduction to Functions
o NYC Open Data

CSci 127 (Hunter)

Lecture 7

June 2021

Scripts

CSci 127 (Hunter)

Lecture 7

: vao
June 2021

11/ 50

Modularity

CSci 127 (Hunter)

Lecture 7

: vao
June 2021

12/ 50

Modularity

E DA
CSci 127 (Hunter) Lecture 7 June 2021 13 / 50

Functions

@ Functions are a way to break code into pieces,
that can be easily reused.

#Name: your name here

#Date: October 2017

#This program, uses functions,
says hello to the world!

def mainQ):
print("Hello, World!™)

if __name__ = "__main__":
main()

CSci 127 (Hunter) Lecture 7 June 2021 14 / 50

Functions

@ Functions are a way to break code into pieces,
that can be easily reused.

@ Many languages require that all code must be
#Name: your name here

#Date: October 2017 organized with functions.

#This program, uses functions,
says hello to the world!

def main(Q):
print("Hello, World!™)

if __name__ = "__main__":
main()

CSci 127 (Hunter) Lecture 7 June 2021 14 / 50

Functions

@ Functions are a way to break code into pieces,
that can be easily reused.

@ Many languages require that all code must be

#Name: your name here

#Date: October 2017 organized with functions.

#This program, uses functions,

says hello to the world! @ The opening function is often called main()
def mainQ):

print("Hello, World!™)

if __name__ = "__main__":
main()

CSci 127 (Hunter) Lecture 7 June 2021 14 / 50

Functions

@ Functions are a way to break code into pieces,
that can be easily reused.

@ Many languages require that all code must be

#Name: your name here

#Date: October 2017 organized with functions.
#This program, uses functions,
says hello to the world! @ The opening function is often called main()
def main(): @ Naming conventions same as variables
print("Hello, World!™)
if __name__ == "__main__":
main()

CSci 127 (Hunter) Lecture 7 June 2021 14 / 50

Functions

#Name: your name here

#Date: October 2017

#This program, uses functions,
says hello to the world!

def main(Q):
print("Hello, World!™)

if __name__ = "__main__":
main()

CSci 127 (Hunter)

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()
Naming conventions same as variables

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:

Lecture 7 June 2021 14 / 50

Functions

#Name: your name here

#Date: October 2017

#This program, uses functions,
says hello to the world!

def mainQ):
print("Hello, World!™)

if __name__ = "__main__":
main()

CSci 127 (Hunter)

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()
Naming conventions same as variables

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print ("Hello", "World")

Lecture 7 June 2021 14 / 50

Functions

#Name: your name here

#Date: October 2017

#This program, uses functions,
says hello to the world!

def mainQ):
print("Hello, World!™)

if __name__ = "__main__":
main()

CSci 127 (Hunter)

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()
Naming conventions same as variables

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print ("Hello", "World")

Can write, or define your own functions,

Lecture 7 June 2021 14 / 50

Functions

#Name: your name here

#Date: October 2017

#This program, uses functions,
says hello to the world!

def mainQ):
print("Hello, World!™)

if __name__ = "__main__":
main()

CSci 127 (Hunter)

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()
Naming conventions same as variables

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print ("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Lecture 7 June 2021 14 / 50

“Hello, World!" with Functions

#Name: your name here
#Date: October 2017
#This program, uses functions,

says hello to the world!
def main(Q):
print("Hello, World!™)
if __name__ == "__main__":
main()

CSci 127 (Hunter) Lecture 7 June 2021

z 9ace

15 / 50

Python Tutor

#Name: your name here
#Date: October 2017
#This program, uses functions,

says hello to the world!

def mainQ): (Demo with pythonTutor)
print("Hello, World!™)

if __name__ == "__main__":
main()

o & = = v
Lecture 7 June 2021 16 / 50

CSci 127 (Hunter)

functions - modules - packages

CSci 127 (Hunter)

Lecture 7

(PN G4
June 2021 17 / 50

functions - modules - packages

P

))

CSci 127 (Hunter)

Lecture 7

(PN G4
June 2021 18 / 50

functions - modules - packages

J)

CSci 127 (Hunter)

Lecture 7

(PN G4
June 2021 19 / 50

Stand-alone program

CSci 127 (Hunter)

Lecture 7

«O>» «Fr <> «E)»

Ha
June 2021

20 / 50

Challenge:

Predict what the code will do:

def totalWithTax(food,tip):
total = @
tax = 0.0875
total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: "))
1Tip = float(input('Enter lunch tip:'))
1Total = totalWithTax(lunch, 1Tip)
print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total: "))
dTip = float{input('Enter dinner tip:")
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

Q>

=}) = E DQAC
CSci 127 (Hunter) Lecture 7 June 2021 21 /50

Python Tutor

def totalWithTax(food,tip):
total = @
tax = 0.0875
total = food + food * tax

total = total + tip
return(total)

lunch = float(input('Enter lunch total: ')) .
1Tip = float(input('Enter lunch tip:')) D h
1Total - totalWithTax(lunch, 1Tip) (emo wit PYthonTUtor
print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total: ')
dTip = float(input('Enter dinner tip:')
dTotal - totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

CSci 127 (Hunter) Lecture 7 June 2021 22 /50

Scope

o You can have multiple

def eight(): functions.

X = 5+3
print(x)

def nine():

X = "nine"
print(x)

CSci 127 (Hunter) Lecture 7 June 2021 23 /50

Scope

o You can have multiple

def eight(): functions.
X = 5+3
print(x) o Each function defines the scope
of its local variables
def nine():
X = "nine"
print(x)

CSci 127 (Hunter) Lecture 7 June 2021 23 /50

Scope

o You can have multiple

def eightQ): functions.
X = 543))
print(x) o Each function defines the scope
of its local variables
def nine():
X = "nine" o A variable defined inside a

print() function is local, i.e. defined
only inside that function.

CSci 127 (Hunter) Lecture 7 June 2021 23 /50

Local Data?

CSci 127 (Hunter)

Lecture 7

Q>
June 2021 24 /50

Input Parameters & Return Values

o Functions can have input
parameters.

def totalWithTax(food,tip):
total = @
tax = 0.0875
total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: "))
1Tip = float(input("Enter lunch tip:'))
1Total = totalWithTax(lunch, 1Tip)
print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip:'))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

CSci 127 (Hunter) Lecture 7 June 2021 25 / 50

Input Parameters & Return Values

def totalWithTax(food,tip):
total = @
tax = 0.0875
total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total:
1Tip = float(input("Enter lunch tip:'))
1Total = totalWithTax(lunch, 1Tip)
print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total:
dTip = float(input('Enter dinner tip:'))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

CSci 127 (Hunter)

D

"

o Functions can have input
parameters.

o Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

Lecture 7 June 2021

25 / 50

Input Parameters & Return Values

o Functions can have input

parameters.
O et g e o Surrounded by parentheses,
tax = 0.0875 . . . w,w
total - food + food * tax both in the function definition,
total = total + tip i)
return(total) and in the function call
1 h = f1 i N 1 h 1: ' . .
T Flonts et bocen Lunen tioe 53 (invocation).

1Total = totalWithTax(lunch, 1Tip)
print('Lunch total is', 1Total)

o The “placeholders” in the

dinner= float(input('Enter dinner total: '))

dTip = float(input("Enter dinner tip:')) funct'on deﬁnit'on formal
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal) pal’ametel’s

CSci 127 (Hunter) Lecture 7 June 2021 25 / 50

Input Parameters & Return Values

def totalWithTax(food,tip):
total = @
tax = 0.0875
total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: "))
1Tip = float(input("Enter lunch tip:'))
1Total = totalWithTax(lunch, 1Tip)
print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip:'))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

CSci 127 (Hunter)

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Lecture 7 June 2021

25 / 50

Input Parameters & Return Values

def totalWi thTa

Formal Parameters

total = @
tax = 0.0875

total = food + food * tax

total = total + tip
return(total)

lunch = float(input('Enter lunch total:
1Tip = float(input("Ente

1Total = totalWithTax
print('Lunch total is',

dinner= float(input('Enter dmner to{al
dTip = float(input('Enter.d

dTotal = totalWithTax

ach tip:"'

»

)

ota
Actual Parameters

tip:

print('Dinner total is',™ @

CSci 127 (Hunter)

'»

2

o Functions can have input
parameters.

o Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

o The “placeholders” in the
function definition: formal
parameters.

o The ones in the function call:
actual parameters.

Lecture 7 June 2021

26 / 50

def tntaIWithTa

total = @
tax - 0.0875 Formal Parameters

total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: "))
1Tip = float(input('Ente ach tip:'))
1Total = totalWithTax P
print('Lunch total is', otd
Actual Parameters
dinner= float(input('Enter dmner to{al)}
dTip = float(input('Enter.d tip:'))
dTotal = totalWithTax
print('Dinner total is', @

CSci 127 (Hunter)

Input Parameters & Return Values

o Functions can have input

parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters.

Functions can also return
values to where it was called.

Lecture 7 June 2021

26 / 50

Challenge:

Circle the actual parameters and underline the formal parameters:

def

def

def

prob4 () :

verse = "jam tomorrow and jam yesterday,"

print("The rule is,")

¢ = mystery(verse)

W = enigma(verse,c)

print(c,w)

mystery(v):

print(v)

c = v.count("jam"}

return{c)

enigma(v,c):

print("but never", v[-1])

for i in range(c):
print("jam")

return("day.")

prob4 ()

CSci 127 (Hunter) Lecture 7

June 2021

27 / 50

Challenge:

Circle the actual parameters and underline the formal parameters:

def

def

prob4():
vers "jam tomorrow and jam yesterday,"
pring("The rule is,")

c = t(i!lﬂﬁh
return(c) Formal
enigma(v,c): Parameters

print("but never", v[-1])

for i in range(c):
print("jam")

return("day.")

prob4 ()

CSci 127 (Hunter) Lecture 7

June 2021

D

28 / 50

Challenge:

Predict what the code will do:

def

def

def

prob4():

verse = "jam tomorrow and jam yesterday,"

print("The rule is,")

C mystery(verse)

W = enigma(verse,c)

print{c,w)

mystery(v):

print(v)

¢ = v.count("jam")

return{c)

enigma(v,c):

print{"but never", v[-1])

for i in range(c):
print("jam")

return("day.")

prob4 ()

CSci 127 (Hunter)

Lecture 7 June 2021

29 / 50

Python Tutor

def probd():
verse = "jam tomorrow and jam yesterday,
print("The rule is,")
© = mystery(verse)
w = enigma(verse,c)
print(c,w)
g Bl
print(v) -
N oty (Demo with pythonTutor)
return(c)
def enigma(v,c):
print("but never", v[-1])
for i in range(c):
print("jam")
return("day.")
proba()

CSci 127 (Hunter) Lecture 7 June 2021 30/ 50

Challenge:

Predict what the code will do:

#Greet loop example

def greetlLoop(person):
print("Greetings")
for i in range(5):

print("Helle", person)

greetLoop("Thomas")

CSci 127 (Hunter)

From "Teaching with Python" by John Zelle

def happy():
print("Happy Birthday to you!")

def sing(P):
happy (O
happy ()
print("Happy Birthday dear " + P + "I")
happy ()

sing("Fred")
sing("Thomas")
sing("Hunter")

Lecture 7 June 2021

31/ 50

Python Tutor

#Greet loop example

def greetlLoop(person):

print("Greetings")

for i in range(5):
print("Hello", person)

greetLoop("Thomas")

From "Teaching with Python” by John Zelle (Demo Wlth pythOnTut Or)

def happy () :
print("Happy Birthday to you!")

def sing(P):
happy ()
happy ()
print("Happy Birthday dear " + P + "!")
happy ()

sing("Fred")
sing("Thomas")
sing("Hunter")

CSci 127 (Hunter) Lecture 7 June 2021 32 /50

Challenge:

Fill in the missing code:

def monthString(monthNum):
Takes as input a number, monthNum, and
returns the corresponding month name as a string.
Example: monthString(1l) returns "January".
Assumes that input is an integer ranging from 1 to 12

monthString =

FILL IN YOUR CODE HERE it
Other than your name above,
this is the only section #t
you change in this program.

return(monthString)

def mainQ):
n = int(input('Enter the number of the month: "))
mString = monthString(n)
print('The month is', mString)

=] 5 = = £ DA
CSci 127 (Hunter) Lecture 7 June 2021 33 /50

IDLE

def monthString(nonthNum):

Takes as input a number, monthNum, and
Feturns the corresponding nonth name as a string
Exanple: monthString(1) returns “January

Assunes that input is an integer ranging from 1 to 12

ronthString =

RS
FILL IN YOUR CODE HERE
Other than your name above,
this is the only section
you change

[

return(monthString)
rainQ):
n = intCinput(’Enter the nurber of the month: ')

mString = ronthString(n)
printC'The ronth is', mString)

CSci 127 (Hunter)

(Demo with IDLE)

Lecture 7

June 2021

DA
34 / 50

Github

o Used to collaborate on and share code,

documents, etc.

Octocat

CSci 127 (Hunter) Lecture 7

June 2021

35 / 50

Github

o Used to collaborate on and share code,
documents, etc.

o Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified.

Octocat

CSci 127 (Hunter) Lecture 7 June 2021

35 / 50

Github

o Used to collaborate on and share code,
documents, etc.

o Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified.

o More formally: git is a version control
protocol for tracking changes and versions
of documents.

Octocat

CSci 127 (Hunter) Lecture 7 June 2021 35 /50

Github

Octocat

CSci 127 (Hunter)

Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.

Lecture 7 June 2021

35 / 50

Github

Octocat

CSci 127 (Hunter)

Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.

Also convenient place to host websites
(i.e. huntercscil27.github.io).

Lecture 7 June 2021

35 / 50

Github

Octocat

CSci 127 (Hunter)

Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.

Also convenient place to host websites
(i.e. huntercscil27.github.io).

In Lab6 you set up github accounts to
copy (‘clone’) documents from the class
repo. (More in future courses.)

Lecture 7 June 2021

35 / 50

Recap: Functions

@ Functions are a way to break code into pieces,
#Name: your name here

#Date: October 2017 that can be easily reused.
#This program, uses functions,
says hello to the world!
def mainQ):
print("Hello, World!™)
if __name__ = "__main__":
mainQ)

CSci 127 (Hunter) Lecture 7 June 2021 36 / 50

Recap: Functions

@ Functions are a way to break code into pieces,

#Name: your name here

#Date: October 2017 that can be easily reused.
#This program, uses functions,
says hello to the world! @ You call or invoke a function by typing its name,
def main(): followed by any inputs, surrounded by parenthesis:
print("Hello, World!™)
if __name__ = "__main__":
mainQ)

CSci 127 (Hunter) Lecture 7 June 2021 36 / 50

Recap: Functions

@ Functions are a way to break code into pieces,

#Name: your name here

#Date: October 2017 that can be easily reused.
#This program, uses functions,
says hello to the world! @ You call or invoke a function by typing its name,
def main(): followed by any inputs, surrounded by parenthesis:
printC"Hello, World!™) Example: print("Hello", "World")
if __name__ = "__main__":
mainQ)

CSci 127 (Hunter) Lecture 7 June 2021 36 / 50

Recap: Functions

@ Functions are a way to break code into pieces,

#Name: your name here

#Date: October 2017 that can be easily reused.
#This program, uses functions,
says hello to the world! @ You call or invoke a function by typing its name,
def main(): followed by any inputs, surrounded by parenthesis:
printC"Hello, World!™) Example: print("Hello", "World")
if __name__ == "__main__": . . .
mainGy @ Can write, or define your own functions,

CSci 127 (Hunter) Lecture 7 June 2021 36 / 50

Recap: Functions

#Name: your name here
#Date: October 2017
#This program, uses functions,

#

if

says hello to the world!

F mainQ:

print("Hello, World!™)

__name__ == "__main__":
main()

CSci 127 (Hunter)

@ Functions are a way to break code into pieces,
that can be easily reused.

@ You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

@ Can write, or define your own functions,
which are stored, until invoked or called.

Lecture 7 June 2021 36 / 50

Today's Topics

o Recap: Slicing & Images
o Introduction to Functions

o NYC Open Data

CSci 127 (Hunter)

Lecture 7

June 2021

Accessing Structured Data: NYC Open Data
Open Data for

All New Yorkers

Search Open Data for things like 311, Buildings, Crime¢

.
"(;‘V*

o Freely available source of data

CSci 127 (Hunter)

Lecture 7

A
June 2021

38 / 50

Accessing Structured Data: NYC Open Data
Open Data for

All New Yorkers

/=i..y
aQ -
Search Open Data for things like 311, Buildings, Crime¢

o Freely available source of data.

"(;‘V*

o Maintained by the NYC data analytics team.

CSci 127 (Hunter)

Lecture 7

A
June 2021

38 / 50

Accessing Structured Data: NYC Open Data

Open Data for
All New Yorkers

Search Open Data for things like 311, Buildings, Crime¢

o Freely available source of data.

o Maintained by the NYC data analytics team.

o We will use several different ones for this class

CSci 127 (Hunter)

Lecture 7

DAy
June 2021 38 /50

Accessing Structured Data: NYC Open Data

Open Data for Qa .

®
All New Yorkers S

i
#

Search Open Data for things like 311, Buildings, Crime¢ ' l ;‘ N7_ ‘

o Freely available source of data.
o Maintained by the NYC data analytics team.
o We will use several different ones for this class.

o Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

= = = = E DA
CSci 127 (Hunter) Lecture 7 June 2021 38 /50

Accessing Structured Data: NYC Open Data

Open Data for
All New Yorkers

Search Open Data for things like 311, Buildings, Crime¢

Freely available source of data.
Maintained by the NYC data analytics team.
We will use several different ones for this class.

Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

©

Lab 7 covers accessing and downloading NYC OpenData datasets.
=} (=) = E E DA
CSci 127 (Hunter) Lecture 7 June 2021 38 /50

Example: OpenData Film Permits

N¥YE OpenData

Film Permits

Permits are generally required when asserting the exclusive use of city property, like a sidewalk, a 3

Home

street, or a park. See http://www1.nyc.gov/site/mome/permits/when-permit-required.page

EventiD

455063

454967

454941

454920

454914

454909

454905

EventType
Shooting Permit
Shooting Permit
Shooting Permit
Shooting Permit
Shooting Permit
Shooting Permit

Shooting Permit

CSci 127 (Hunter)

StartDateTi...

12/06/2018 07:00...

12/06/2018 07:00...

12/06/2018 07:00...

12/06/2018 10:00...

12/06/2018 08:00...

12/05/2018 08:00...

12/06/2018 07:00...

EndDateTime :
12/06/2018 09:00...
12/06/2018 05:00...
12/06/2018 07:00...
12/06/2018 11:59...
12/06/2018 11:00...
12/05/2018 06:00...

12/06/2018 10:00...

Lecture 7

EnteredOr ¢ :

12/05/2018 12:36...

12/04/2018 09:11...

12/04/2018 05:44...

12/04/2018 03:28...

12/04/2018 03:05...

12/04/2018 02:45...

12/04/2018 02:17...

EventAg...

Mayor's Offic...
Mayor's Offic...
Mayor's Offic...
Mayor's Offic...
Mayor's Offic...
Mayor's Offic...

Mayor's Offic...

Data About v Learn

ParkingHeld
STARR AVENUE b...
EAGLE STREET be...
SOUTH OXFORD ...
13 AVENUE betw...
ELDERT STREET b...
ELDERT STREET b...

35 STREET betwe...

June 2021

Borou..

Queens
Brooklyn
Brooklyn
Queens
Brooklyn
Brooklyn

Queens

DA
39 / 50

Example: OpenData Film Permits

mopenData Home Data About. Leam. Alrts ContactUs Blog = Q

Film Permits E

Permits are generally required when asserting the exclusive use of city property, like a sidewalk, a &

sireet, or a park p s P quired.page More iews | itter | visuaize | export | Discuss | embed | About

Eventis | Eventlype | StartDateTL. i EndDateTime i EnteredOr i i EventAg. : ParkingHeld Borou. | Com.. i Police. ! Categ. | SubC. i Count Zipco..
as5063 p ' 120052018 1236.. MayorsOffic.. STARRAVENUED.. Queens 2 108 Televsion Episodics.. United Sa... 11101
454967 p ' 1200420180911, MayorsOffic. EAGLESTREETbe.. Brookyn 1 % Televsion Episodics.. United Sta.. 11222
asasar Mayors Offic. Brookyn 2.6 76,88 St Photo... Not Applic... United Sta.. 1121711
454520 ShootingPermit 1210672018 10:00.. 12/06/2018 11:59... 12/0420180328.. MayorsOffic.. 13AVENUEbetw.. Queens 1,37 109,790 Fim Feawre UniedSta.. 1000211
454914 ShootingPermit 12/06/20180800.. 12062018 110... 12/0420180305.. MayorsOffic.. ELDERTSTREETb.. Brookyn 4,5 104,75,83 Televison Episodics.. UnitedSta.. 11207, 11
454909 MayorsOffic. ELDERTSTREETb.. Brookyn & 8 Televison Episodics.. UnitedSta.. 11237
454905 1 s 1200420180217.. MayorsOffic.. 3SSTREETbewe. Queens 1 8 Television Cable-epis.. United Sta.. 11101, 11

o What's the most popular street for filming?

DA
CSci 127 (Hunter) Lecture 7 June 2021 40 / 50

Example: OpenData Film Permits

NV¥E OpenData

Film Permits

Permits are generally required when asserting the exclusive use of city property, like a sidewalk, a £

Home Data About v

street, or a park. See http://www1.nyc.gov/site/mome/permits/when-permit.required.page

EventiD

455063

454967

asa941

454920

asag1a

454909

454905

Eventrype StartDateT. EndDateTime { EnteredOr & | EventAg. ParkingHeld
1 1 120052018 1236.. MayorsOffic.. STARRAVENUE.
' 1 120042018 09:11... Mayors Offc.. EAGLE STREET be.

Mayor's Offic.

Shooting Permit

Shooting Permit

12/06/2018 10:0.

12/06/2018 08:90.

12/06/2018 11:55.

12/06/2018 11:00.

12/0472018 0328.

12/0472018 0395,

12/0472018 02:17.

Mayor's Offic.
Mayor's Offic
Mayor's Offc.

Mayor's Offic.

13 AVENUE betw.
ELDERT STREET b,
ELDERT STREET b,

35 STREET betwe.

Leam

Borou.
Queens

Brookyn
Brookiyn
Queens

Brookiyn
Brookiyn

Queens

Nerts

26

45

o What's the most popular street for filming?

o What's the most popular borough?

CSci 127 (Hunter)

Lecture 7

Contact Us

Blog

orevews | iter [vsvatze | expor

Police.
108

%

76,88
109,7,9
104,75,83
8

s

Categ.
Television
Television
till Photo.
Fim

Television
Television

Television

SubC.
episodics.
Episodics.
Not Applc.
Feature

episodics.
episodics.

Cable-epis.

Oisuss [emoed | Aot

Count.

United Sta

United Sta

United Sta

United sta

United sta

United Sta

United Sta

Zipco.
o1
1222
naz,n
10002, 11
1207,1
1237

01,11

June 2021

DA
40 / 50

Example: OpenData Film Permits

NV¥E OpenData

Film Permits

Permits are generally required when asserting the exclusive use of city property, like a sidewalk, a £

Home Data About v

street, or a park. See http://www1.nyc.govisite/mome/permits/when-permit required.page

EventiD

455063

454967

454941

454920

asagta

454909

454905

EventType

Shooting Permit

Shooting Permit

StartDateTi.

12/0672018 07:00.

12/0672018 07:00.

EndDateTime

12/0672018 09:0.

12/0672018 05:00.

Enteredor 4

12/05/2018 1236

12/0472018 09:11

Eventag.
Mayor's Offic.

Mayor's Offc

ParkingHeld
STARR AVENUE b,

EAGLE STREET be.

Shooting Permit

Shox

Shooting Permit

Shooting Permit

ing Permit

12/06/2018 10:0.

12/06/2018 08:90.

12/0672018 11:59.

12/06/2018 11:00.

12/0472018 0328.

12/0472018 0395,

12/0672018 07:00.

12/0672018 10:00.

12/0472018 02:17.

Mayors Offc.
Mayor's Offic
Mayor's Offic
Mayor's Ofic.

Mayor's Offic.

13 AVENUE betw.

ELDERT STREET b,

ELDERT STREET b.

35 STREET betwe.

Leam

Borou
Queens

Brookiyn
Brookyn
Queens

Brookiyn
Brookiyn

Queens

Nerts

o What's the most popular street for filming?

o What's the most popular borough?

o How many TV episodes were filmed?

CSci 127 (Hunter)

Lecture 7

Contact Us

Blog

orevews | iter [vsvatze | expor

Oisuss [emoed | Aot

Police. i | Categ. i SubC.
108 Television Episodic s
% Television Episodic s
7688 sl Photo.. NotAppic.
109.7.90 Fim Feature
1067583 Telesion Episodics.
& Television Episodic s
114 Television Cable-epis

] = =

Count
United sta
United sta
United Sta
United Sta
United sta
United sta

United Sta

Zipco.
o1
1222
naz,n
10002, 11,
1207,11.
1237

01,11

June 2021

DA
40 / 50

Example: OpenData Film Permits

NYE OpenData N s |

o Download the data as a CSV file and store on your computer.

CSci 127 (Hunter) Lecture 7 June 2021 41 /50

Example: OpenData Film Permits

N¥E OpenData Womo Osia Moot Leam Mets Cotaails Sy | Q| [sow]

o Download the data as a CSV file and store on your computer.

o Python program:

#CSci 127 Teaching Staff
#March 2019
#0penData Film Permits

#Import pandas for reading and analyzing CSV data:

import pandas as pd

csvFile = "filmPermits.csv" #Name of the CSV file

tickets = pd.read_csv(csvFile)#Read in the file to a dataframe

] = = E PANE
CSci 127 (Hunter) Lecture 7 June 2021 41 /50

Example: OpenData Film Permits

N¥E OpenData Womo Osia Moot Leam Mets Cotaails Sy | Q| [sow]

o Download the data as a CSV file and store on your computer.

o Python program:

#(Sci 127 Teaching Staff
#March 2019
#0penData Film Permits

#Import pandas for reading and analyzing CSV data:

import pandas as pd

csvFile = "filmPermits.csv" #Name of the CSV file

tickets = pd.read_csv(csvFile)#Read in the file to a dataframe
print(tickets) #Print out the dataframe

=} = = E PENE
CSci 127 (Hunter) Lecture 7 June 2021 42 / 50

Example: OpenData Film Permits

N¥E OpenData Womo Osia Moot Leam Mets Cotaails Sy | Q| [sow]

o Download the data as a CSV file and store on your computer.

o Python program:

#CSci 127 Teaching Staff
#March 2019
#0penData Film Permits

#Import pandas for reading and analyzing CSV data:

import pandas as pd

csvFile = "filmPermits.csv" #Name of the CSV file

tickets = pd.read_csv(csvFile)#Read in the file to a dataframe
print(tickets) #Print out the dataframe
print(tickets["ParkingHeld"]) #Print out streets (multiple times)

=} = = E DQAC
CSci 127 (Hunter) Lecture 7 June 2021 43 / 50

it
<

Example: OpenData Film Permits

N¥E OpenData Home Osa Aocute leam. Aers ComactUs Bog | Q| [sown]

o Download the data as a CSV file and store on your computer.

o Python program:

#CSci 127 Teaching Staff
#March 2019
#0penData Film Permits

#Import pandas for reading and analyzing CSV data:

import pandas as pd

csvFile = "filmPermits.csv" #Name of the CSV file

tickets = pd.read_csv(csvFile)#Read in the file to a dataframe

print(tickets) #Print out the dataframe

print(tickets["ParkingHeld"]) #Print out streets (multiple times)
print(tickets["ParkingHeld"].value_counts()) #Print out streets & number of times used

=} = = E DQAC
CSci 127 (Hunter) Lecture 7 June 2021 44 / 50

it
<

Example: OpenData Film Permits

N¥E OpenData Womo Osia Moot Leam Mets Cotaails Sy | Q| [sow]

o Download the data as a CSV file and store on your computer.

o Python program:

#(CSci 127 Teaching Staff
#March 2019
#0penData Film Permits

#Import pandas for reading and analyzing CSV data:

import pandas as pd

csvFile = "filmPermits.csv" #Name of the CSV file

tickets = pd.read_csv(csvFile)#Read in the file to a dataframe

print(tickets) #Print out the dataframe

print(tickets["ParkingHeld"]) #Print out streets (multiple times)
print(tickets["ParkingHeld"].value_counts()) #Print out streets & number of times used
print(tickets["ParkingHeld"].value_counts(Q[:1@]) #Print 10 most popular

=} = = E D
CSci 127 (Hunter) Lecture 7 June 2021 45 / 50

it
<

Example: OpenData Film Permits

mopenData Home Data About. Leam. Aletts ContactUs Blog = Q

Film Permits =]

Permits are generally required when asserting the exclusive use of city property, like a sidewalk, a £

street, or a park. See http:/ nyc.govisite/mome/permits/when-permit-required.page More Views | Fiter | visuaize | export | piscuss | embed | About

Eventic | | EventType StartDateT. EndDateTime : | Enteredor 4 : EventAg. ParkingHeld Borou. : Com.. : | Police. Categ. i SubC. : Count. i ZipCo,
455063 ShootigPermit 12/06/20180700.. 1200620180900... 120520181236 MayorsOffic.. STARRAVENUED.. Queens 2 108 Television Episodics.. UnitedSta.. 11101
454967 ShootingPermit 12/06/201807:00... 1210 1200420180911... MayorsOffic.. EAGLESTREETbe.. Brookyn 1 % Televsion Episodics.. United Sta.. 11222
asasar Mayor's Ofic. Brookyn 2.6 76,88 SulPhoto.. NotApplc.. United Sta.. 1121711
454920 Shooting Permit 12/06/2018 1030 1200420180328, MayorsOffic.. 13AVENUEbetw.. Queens 1,37 109,290 Fim Feawre UniedSta.. 1000211
454914 Shoot o800 1210472018 0305, sOffic. ELDERTS Bookyn 45 10,7583 Television Episodics.. UnitedSta.. 11207, 11
454309 18 0800, 1200472018 0245, sOffic.. ELDERTS Brookyn 4 & Television Episodics.. United Sta.. 11237
454305 ShootigPermit 12/06201807:00.. 120062018 1000.. 12/0420180217.. MayorsOffic.. 3SSTREETbewe.. Queens 1 18 Television Cable-epis... United Sta... 11101, 11

Can approach the other questions in the same way:
o What's the most popular street for filming?
o What's the most popular borough?

o How many TV episodes were filmed?

] = = E A C
CSci 127 (Hunter) Lecture 7 June 2021 46 / 50

Design Question

¢

¢

e

Design an algorithm that finds the collision that is closest to input

location.

DATE TIME BOROUGH |ZIP CODE LATITUDE LONGITUDE LOCATION QM STREET b CROSS STREE OFF STREET | NUMEER OF
12/31/16 256 2 AVENUE [1]
12/31/16 955 BROMK 10462 4083521 -73.85497 {40.835209E UMIOMPORT OLMSTEAD AWEMUE [1]
1331716 250 JESUP AVEMUE [1]
1331716 9:40 BROOKLYM 11235 4066911 -7395335 (4006691137 ROGERS AVE UNIOM STREET [1]
13/31/16 20:23 | BROOKLYN 11209 4062578 -74.02415 {400625T7BOS BOSTREET 5 AVENUE [1]
13/31/16 20:30 | JUEENS 11375 A0 71958 -TIB3IOTT (40719584, ASCAN AVEN JUEEMS BOULEVARD [1]
13/31/16 20:15 | BROOKLYN 113204 GOSTREET BAY PARKWAY [1]
13/31/16 2090 4066479 | -TIRINLT | [40.6647044, -73.B2D4E53) [1]
13/31/16 2090 EIETREET 37 AVEMNUE [1]
13/31/16 20:05 | BROMX 10457 A0.B542% -7390026 (4085420925 AYER AVENU EAST 1EL1 STREET a

CSci 127 (Hunter)

Lecture 7

=

June 2021

DA
47 / 50

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

CSci 127 (Hunter) Lecture 7 June 2021 48 / 50

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

o Create a “To Do" list of what your program has to accomplish.

CSci 127 (Hunter) Lecture 7 June 2021 48 / 50

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.

CSci 127 (Hunter) Lecture 7 June 2021 48 / 50

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.

CSci 127 (Hunter) Lecture 7 June 2021 48 / 50

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.

o Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.
o Example:

CSci 127 (Hunter) Lecture 7 June 2021 48 / 50

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.
How to approach this:

o Create a “To Do" list of what your program has to accomplish.

o Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.
o Example:

@ Find data set (great place to look: NYC OpenData).

CSci 127 (Hunter) Lecture 7 June 2021 48 / 50

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.

o Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.
o Example:

@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.

CSci 127 (Hunter) Lecture 7 June 2021 48 / 50

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.

©

Example:

@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.
@ Read the CSV file.

CSci 127 (Hunter) Lecture 7 June 2021 48 / 50

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.
o Don't worry if you don't know how to do all the items you write down.
o Example:

@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.
@ Read the CSV file.

@ Check distance from each collision to user's location.

CSci 127 (Hunter) Lecture 7 June 2021 48 / 50

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.
o Don't worry if you don't know how to do all the items you write down.
o Example:

@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.

@ Read the CSV file.

@ Check distance from each collision to user's location.
® Save the location with the smallest distance.

CSci 127 (Hunter) Lecture 7 June 2021 48 / 50

Recap

Open Data for
All New Yorkers

o Functions are a way to break code into
pieces, that can be easily reused.

CSci 127 (Hunter)

Lecture 7

DAy
June 2021 49 / 50

Recap

o Functions are a way to break code into
pieces, that can be easily reused.

Open Data for
All New Yorkers

@ You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:

=] 5 = = £ DA
CSci 127 (Hunter) Lecture 7 June 2021 49 / 50

Recap

o Functions are a way to break code into
pieces, that can be easily reused.

Open Data for
All New Yorkers

@ You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:

(T Example: print("Hello", "World")

=] 5 = = £ DA
CSci 127 (Hunter) Lecture 7 June 2021 49 / 50

Recap

o Functions are a way to break code into
pieces, that can be easily reused.

Open Data for
All New Yorkers

@ You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:

0" i Example: print("Hello", "World")
(
5 9 s o Can write, or define your own functions,
LA
e® -
O B> «Z» <=>» T 9QAC

CSci 127 (Hunter) Lecture 7 June 2021 49 / 50

Recap

o Functions are a way to break code into
pieces, that can be easily reused.

Open Data for
All New Yorkers

@ You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:

0" i Example: print("Hello", "World")
(
5 9 s o Can write, or define your own functions,
LR IR A which are stored, until invoked or called.
e
O B> «Z» <=>» T 9QAC

CSci 127 (Hunter) Lecture 7 June 2021 49 / 50

Recap

Open Data for
All New Yorkers

CSci 127 (Hunter)

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:

Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

Lecture 7 June 2021 49 / 50

Class Reminders!

Before next lecture, don’t forget to:

o Work on this week's Online Lab

CSci 127 (Hunter)

Lecture 7

A
June 2021

50 / 50

Class Reminders!

Before next lecture, don’t forget to:

o Work on this week's Online Lab

o Take the Lab Quiz on Gradescope by 9pm on today

CSci 127 (Hunter)

Lecture 7

DAy
June 2021 50 / 50

Class Reminders!

Before next lecture, don’t forget to:

o Work on this week’s Online Lab
o Take the Lab Quiz on Gradescope by 9pm on today

o Submit this class's 5 programming assignments (programs 31-35)

CSci 127 (Hunter)

Lecture 7

DAy
June 2021 50 / 50

Class Reminders!

Before next lecture, don’t forget to:
o Work on this week’s Online Lab
o Take the Lab Quiz on Gradescope by 9pm on today
o Submit this class's 5 programming assignments (programs 31-35)

o Come to tutoring Tuesdays, Wednesdays, and Thursdays 2-3pm for
help!!!

= =) E E E 9ace
CSci 127 (Hunter) Lecture 7 June 2021 50 / 50

