
CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

CSci 127 (Hunter) Lecture 12 July 2021 1 / 78

Frequently Asked Questions

From email and tutoring.

How can I get info about CS opportunities?

Join a club!
Subscribe to the CUNY2X newsletter.

I want to learn more– what should I take next?

I Majors: CSci 135 (Software Design and Analysis in C++) &
CSci 150 (Discrete Structures)

I Minors: CSci 133 (More Python) & CSci 232 (Databases)

CSci 127 (Hunter) Lecture 12 July 2021 2 / 78

https://webnode.us20.list-manage.com/subscribe?u=f4caf8fe32026aaa52aa4275b&id=1985dbf185

Frequently Asked Questions

From email and tutoring.

How can I get info about CS opportunities?
Join a club!
Subscribe to the CUNY2X newsletter.

I want to learn more– what should I take next?

I Majors: CSci 135 (Software Design and Analysis in C++) &
CSci 150 (Discrete Structures)

I Minors: CSci 133 (More Python) & CSci 232 (Databases)

CSci 127 (Hunter) Lecture 12 July 2021 2 / 78

https://webnode.us20.list-manage.com/subscribe?u=f4caf8fe32026aaa52aa4275b&id=1985dbf185

Frequently Asked Questions

From email and tutoring.

How can I get info about CS opportunities?
Join a club!
Subscribe to the CUNY2X newsletter.

I want to learn more– what should I take next?

I Majors: CSci 135 (Software Design and Analysis in C++) &
CSci 150 (Discrete Structures)

I Minors: CSci 133 (More Python) & CSci 232 (Databases)

CSci 127 (Hunter) Lecture 12 July 2021 2 / 78

https://webnode.us20.list-manage.com/subscribe?u=f4caf8fe32026aaa52aa4275b&id=1985dbf185

Frequently Asked Questions

From email and tutoring.

How can I get info about CS opportunities?
Join a club!
Subscribe to the CUNY2X newsletter.

I want to learn more– what should I take next?

I Majors: CSci 135 (Software Design and Analysis in C++) &
CSci 150 (Discrete Structures)

I Minors: CSci 133 (More Python) & CSci 232 (Databases)

CSci 127 (Hunter) Lecture 12 July 2021 2 / 78

https://webnode.us20.list-manage.com/subscribe?u=f4caf8fe32026aaa52aa4275b&id=1985dbf185

Frequently Asked Questions

From email and tutoring.

How can I get info about CS opportunities?
Join a club!
Subscribe to the CUNY2X newsletter.

I want to learn more– what should I take next?

I Majors: CSci 135 (Software Design and Analysis in C++) &
CSci 150 (Discrete Structures)

I Minors: CSci 133 (More Python) & CSci 232 (Databases)

CSci 127 (Hunter) Lecture 12 July 2021 2 / 78

https://webnode.us20.list-manage.com/subscribe?u=f4caf8fe32026aaa52aa4275b&id=1985dbf185

Frequently Asked Questions

What’s the best way to study for the final exam?

The final exam problems are variations on the homework, quizzes, lecture
examples, and lecture previews.
Past exams (and answer keys) are on-line. Do at least one previous exam: allow 1
hour and work through, grade yourself, update note sheet, and repeat.

Why do you care about cheating?
First: it gives unfair advantage & is immoral.
Second: it degrades the quality of our students.
Third: it’s a standard question on faculty references.
Industry & graduate schools hate it: don’t want someone who falsifies work.

CSci 127 (Hunter) Lecture 12 July 2021 3 / 78

Frequently Asked Questions

What’s the best way to study for the final exam?
The final exam problems are variations on the homework, quizzes, lecture
examples, and lecture previews.

Past exams (and answer keys) are on-line. Do at least one previous exam: allow 1
hour and work through, grade yourself, update note sheet, and repeat.

Why do you care about cheating?
First: it gives unfair advantage & is immoral.
Second: it degrades the quality of our students.
Third: it’s a standard question on faculty references.
Industry & graduate schools hate it: don’t want someone who falsifies work.

CSci 127 (Hunter) Lecture 12 July 2021 3 / 78

Frequently Asked Questions

What’s the best way to study for the final exam?
The final exam problems are variations on the homework, quizzes, lecture
examples, and lecture previews.
Past exams (and answer keys) are on-line. Do at least one previous exam: allow 1
hour and work through, grade yourself, update note sheet, and repeat.

Why do you care about cheating?
First: it gives unfair advantage & is immoral.
Second: it degrades the quality of our students.
Third: it’s a standard question on faculty references.
Industry & graduate schools hate it: don’t want someone who falsifies work.

CSci 127 (Hunter) Lecture 12 July 2021 3 / 78

Frequently Asked Questions

What’s the best way to study for the final exam?
The final exam problems are variations on the homework, quizzes, lecture
examples, and lecture previews.
Past exams (and answer keys) are on-line. Do at least one previous exam: allow 1
hour and work through, grade yourself, update note sheet, and repeat.

Why do you care about cheating?

First: it gives unfair advantage & is immoral.
Second: it degrades the quality of our students.
Third: it’s a standard question on faculty references.
Industry & graduate schools hate it: don’t want someone who falsifies work.

CSci 127 (Hunter) Lecture 12 July 2021 3 / 78

Frequently Asked Questions

What’s the best way to study for the final exam?
The final exam problems are variations on the homework, quizzes, lecture
examples, and lecture previews.
Past exams (and answer keys) are on-line. Do at least one previous exam: allow 1
hour and work through, grade yourself, update note sheet, and repeat.

Why do you care about cheating?
First: it gives unfair advantage & is immoral.

Second: it degrades the quality of our students.
Third: it’s a standard question on faculty references.
Industry & graduate schools hate it: don’t want someone who falsifies work.

CSci 127 (Hunter) Lecture 12 July 2021 3 / 78

Frequently Asked Questions

What’s the best way to study for the final exam?
The final exam problems are variations on the homework, quizzes, lecture
examples, and lecture previews.
Past exams (and answer keys) are on-line. Do at least one previous exam: allow 1
hour and work through, grade yourself, update note sheet, and repeat.

Why do you care about cheating?
First: it gives unfair advantage & is immoral.
Second: it degrades the quality of our students.

Third: it’s a standard question on faculty references.
Industry & graduate schools hate it: don’t want someone who falsifies work.

CSci 127 (Hunter) Lecture 12 July 2021 3 / 78

Frequently Asked Questions

What’s the best way to study for the final exam?
The final exam problems are variations on the homework, quizzes, lecture
examples, and lecture previews.
Past exams (and answer keys) are on-line. Do at least one previous exam: allow 1
hour and work through, grade yourself, update note sheet, and repeat.

Why do you care about cheating?
First: it gives unfair advantage & is immoral.
Second: it degrades the quality of our students.
Third: it’s a standard question on faculty references.

Industry & graduate schools hate it: don’t want someone who falsifies work.

CSci 127 (Hunter) Lecture 12 July 2021 3 / 78

Frequently Asked Questions

What’s the best way to study for the final exam?
The final exam problems are variations on the homework, quizzes, lecture
examples, and lecture previews.
Past exams (and answer keys) are on-line. Do at least one previous exam: allow 1
hour and work through, grade yourself, update note sheet, and repeat.

Why do you care about cheating?
First: it gives unfair advantage & is immoral.
Second: it degrades the quality of our students.
Third: it’s a standard question on faculty references.
Industry & graduate schools hate it: don’t want someone who falsifies work.

CSci 127 (Hunter) Lecture 12 July 2021 3 / 78

A few words on Academic Integrity

From our Syllabus.

Hunter College regards acts of academic dishonesty (e.g., plagiarism, cheating on
examinations, obtaining unfair advantage, and falsification of records and official
documents) as serious offenses against the values of intellectual honesty. The
College is committed to enforcing the CUNY Policy on Academic Integrity and will
pursue cases of academic dishonesty according to the Hunter College Academic
Integrity Procedures. All incidents of cheating will be reported to the Office of
Student Conduct in the Vice President for Student Affairs and Dean of Students
office.

All suspected cases of cheating on the final exam (e.g. answer for a different
version of the exam) will be reported.

Students will get a PEN grade until the investigation is complete. This may delay
registration.

If the student is found in violation by the Office of Student Conduct, they will
receive a 0 on the exam, which also means they will fail the class.

CSci 127 (Hunter) Lecture 12 July 2021 4 / 78

A few words on Academic Integrity

From our Syllabus.

Hunter College regards acts of academic dishonesty (e.g., plagiarism, cheating on
examinations, obtaining unfair advantage, and falsification of records and official
documents) as serious offenses against the values of intellectual honesty. The
College is committed to enforcing the CUNY Policy on Academic Integrity and will
pursue cases of academic dishonesty according to the Hunter College Academic
Integrity Procedures. All incidents of cheating will be reported to the Office of
Student Conduct in the Vice President for Student Affairs and Dean of Students
office.

All suspected cases of cheating on the final exam (e.g. answer for a different
version of the exam) will be reported.

Students will get a PEN grade until the investigation is complete. This may delay
registration.

If the student is found in violation by the Office of Student Conduct, they will
receive a 0 on the exam, which also means they will fail the class.

CSci 127 (Hunter) Lecture 12 July 2021 4 / 78

A few words on Academic Integrity

From our Syllabus.

Hunter College regards acts of academic dishonesty (e.g., plagiarism, cheating on
examinations, obtaining unfair advantage, and falsification of records and official
documents) as serious offenses against the values of intellectual honesty. The
College is committed to enforcing the CUNY Policy on Academic Integrity and will
pursue cases of academic dishonesty according to the Hunter College Academic
Integrity Procedures. All incidents of cheating will be reported to the Office of
Student Conduct in the Vice President for Student Affairs and Dean of Students
office.

All suspected cases of cheating on the final exam (e.g. answer for a different
version of the exam) will be reported.

Students will get a PEN grade until the investigation is complete. This may delay
registration.

If the student is found in violation by the Office of Student Conduct, they will
receive a 0 on the exam, which also means they will fail the class.

CSci 127 (Hunter) Lecture 12 July 2021 4 / 78

A few words on Academic Integrity

From our Syllabus.

Hunter College regards acts of academic dishonesty (e.g., plagiarism, cheating on
examinations, obtaining unfair advantage, and falsification of records and official
documents) as serious offenses against the values of intellectual honesty. The
College is committed to enforcing the CUNY Policy on Academic Integrity and will
pursue cases of academic dishonesty according to the Hunter College Academic
Integrity Procedures. All incidents of cheating will be reported to the Office of
Student Conduct in the Vice President for Student Affairs and Dean of Students
office.

All suspected cases of cheating on the final exam (e.g. answer for a different
version of the exam) will be reported.

Students will get a PEN grade until the investigation is complete. This may delay
registration.

If the student is found in violation by the Office of Student Conduct, they will
receive a 0 on the exam, which also means they will fail the class.

CSci 127 (Hunter) Lecture 12 July 2021 4 / 78

Today’s Topics

Recap: Incrementer Design Challenge

C++: Basic Format & Variables

I/O and Definite Loops in C++

Conditionals in C++

Indefinite Loops in C++

Recap: C++ & Python

More Info on the Final Exam

CSci 127 (Hunter) Lecture 12 July 2021 5 / 78

Today’s Topics

Recap: Incrementer Design Challenge

C++: Basic Format & Variables

I/O and Definite Loops in C++

Conditionals in C++

Indefinite Loops in C++

Recap: C++ & Python

More Info on the Final Exam

CSci 127 (Hunter) Lecture 12 July 2021 6 / 78

Recap: Design Challenge: Incrementers

Simplest arithmetic: add one (“increment”) a variable.

Example: Increment a decimal number:

def addOne(n):

m = n+1

return(m)

Challenge: Write an algorithm for incrementing numbers expressed as words.
Example: "forty one" → "forty two"

Hint: Convert to numbers, increment, and convert back to strings.

Challenge: Write an algorithm for incrementing binary numbers.

Example: "1001" → "1010"

CSci 127 (Hunter) Lecture 12 July 2021 7 / 78

Recap: Design Challenge: Incrementers

Simplest arithmetic: add one (“increment”) a variable.

Example: Increment a decimal number:

def addOne(n):

m = n+1

return(m)

Challenge: Write an algorithm for incrementing numbers expressed as words.
Example: "forty one" → "forty two"

Hint: Convert to numbers, increment, and convert back to strings.

Challenge: Write an algorithm for incrementing binary numbers.

Example: "1001" → "1010"

CSci 127 (Hunter) Lecture 12 July 2021 7 / 78

Recap: Design Challenge: Incrementers

Simplest arithmetic: add one (“increment”) a variable.

Example: Increment a decimal number:

def addOne(n):

m = n+1

return(m)

Challenge: Write an algorithm for incrementing numbers expressed as words.
Example: "forty one" → "forty two"

Hint: Convert to numbers, increment, and convert back to strings.

Challenge: Write an algorithm for incrementing binary numbers.

Example: "1001" → "1010"

CSci 127 (Hunter) Lecture 12 July 2021 7 / 78

Recap: Design Challenge: Incrementers

Simplest arithmetic: add one (“increment”) a variable.

Example: Increment a decimal number:

def addOne(n):

m = n+1

return(m)

Challenge: Write an algorithm for incrementing numbers expressed as words.

Example: "forty one" → "forty two"

Hint: Convert to numbers, increment, and convert back to strings.

Challenge: Write an algorithm for incrementing binary numbers.

Example: "1001" → "1010"

CSci 127 (Hunter) Lecture 12 July 2021 7 / 78

Recap: Design Challenge: Incrementers

Simplest arithmetic: add one (“increment”) a variable.

Example: Increment a decimal number:

def addOne(n):

m = n+1

return(m)

Challenge: Write an algorithm for incrementing numbers expressed as words.
Example: "forty one" → "forty two"

Hint: Convert to numbers, increment, and convert back to strings.

Challenge: Write an algorithm for incrementing binary numbers.

Example: "1001" → "1010"

CSci 127 (Hunter) Lecture 12 July 2021 7 / 78

Recap: Design Challenge: Incrementers

Simplest arithmetic: add one (“increment”) a variable.

Example: Increment a decimal number:

def addOne(n):

m = n+1

return(m)

Challenge: Write an algorithm for incrementing numbers expressed as words.
Example: "forty one" → "forty two"

Hint: Convert to numbers, increment, and convert back to strings.

Challenge: Write an algorithm for incrementing binary numbers.

Example: "1001" → "1010"

CSci 127 (Hunter) Lecture 12 July 2021 7 / 78

Recap: Design Challenge: Incrementers

Simplest arithmetic: add one (“increment”) a variable.

Example: Increment a decimal number:

def addOne(n):

m = n+1

return(m)

Challenge: Write an algorithm for incrementing numbers expressed as words.
Example: "forty one" → "forty two"

Hint: Convert to numbers, increment, and convert back to strings.

Challenge: Write an algorithm for incrementing binary numbers.

Example: "1001" → "1010"

CSci 127 (Hunter) Lecture 12 July 2021 7 / 78

Recap: Design Challenge: Incrementers

Simplest arithmetic: add one (“increment”) a variable.

Example: Increment a decimal number:

def addOne(n):

m = n+1

return(m)

Challenge: Write an algorithm for incrementing numbers expressed as words.
Example: "forty one" → "forty two"

Hint: Convert to numbers, increment, and convert back to strings.

Challenge: Write an algorithm for incrementing binary numbers.

Example: "1001" → "1010"

CSci 127 (Hunter) Lecture 12 July 2021 7 / 78

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Hint: Convert to numbers, increment, and convert back to strings.

Pseudocode same for both questions:

1 Get user input.

2 Convert to standard decimal number.

3 Add one (increment) the standard decimal number.

4 Convert back to your format.

5 Print the result.

CSci 127 (Hunter) Lecture 12 July 2021 8 / 78

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Hint: Convert to numbers, increment, and convert back to strings.

Pseudocode same for both questions:

1 Get user input.

2 Convert to standard decimal number.

3 Add one (increment) the standard decimal number.

4 Convert back to your format.

5 Print the result.

CSci 127 (Hunter) Lecture 12 July 2021 8 / 78

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Hint: Convert to numbers, increment, and convert back to strings.

Pseudocode same for both questions:

1 Get user input.

2 Convert to standard decimal number.

3 Add one (increment) the standard decimal number.

4 Convert back to your format.

5 Print the result.

CSci 127 (Hunter) Lecture 12 July 2021 8 / 78

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Hint: Convert to numbers, increment, and convert back to strings.

Pseudocode same for both questions:

1 Get user input.

2 Convert to standard decimal number.

3 Add one (increment) the standard decimal number.

4 Convert back to your format.

5 Print the result.

CSci 127 (Hunter) Lecture 12 July 2021 8 / 78

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Hint: Convert to numbers, increment, and convert back to strings.

Pseudocode same for both questions:

1 Get user input.

2 Convert to standard decimal number.

3 Add one (increment) the standard decimal number.

4 Convert back to your format.

5 Print the result.

CSci 127 (Hunter) Lecture 12 July 2021 8 / 78

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Hint: Convert to numbers, increment, and convert back to strings.

Pseudocode same for both questions:

1 Get user input.

2 Convert to standard decimal number.

3 Add one (increment) the standard decimal number.

4 Convert back to your format.

5 Print the result.

CSci 127 (Hunter) Lecture 12 July 2021 8 / 78

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Hint: Convert to numbers, increment, and convert back to strings.

Pseudocode same for both questions:

1 Get user input.

2 Convert to standard decimal number.

3 Add one (increment) the standard decimal number.

4 Convert back to your format.

5 Print the result.
CSci 127 (Hunter) Lecture 12 July 2021 8 / 78

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Pseudocode same for both questions:

1 Get user input: "forty one"

2 Convert to standard decimal number: 41

3 Add one (increment) the standard decimal number: 42

4 Convert back to your format: "forty two"

5 Print the result.

CSci 127 (Hunter) Lecture 12 July 2021 9 / 78

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Pseudocode same for both questions:

1 Get user input: "forty one"

2 Convert to standard decimal number: 41

3 Add one (increment) the standard decimal number: 42

4 Convert back to your format: "forty two"

5 Print the result.

CSci 127 (Hunter) Lecture 12 July 2021 9 / 78

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Pseudocode same for both questions:

1 Get user input: "forty one"

2 Convert to standard decimal number: 41

3 Add one (increment) the standard decimal number: 42

4 Convert back to your format: "forty two"

5 Print the result.

CSci 127 (Hunter) Lecture 12 July 2021 9 / 78

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Pseudocode same for both questions:

1 Get user input: "forty one"

2 Convert to standard decimal number: 41

3 Add one (increment) the standard decimal number: 42

4 Convert back to your format: "forty two"

5 Print the result.

CSci 127 (Hunter) Lecture 12 July 2021 9 / 78

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Pseudocode same for both questions:

1 Get user input: "forty one"

2 Convert to standard decimal number: 41

3 Add one (increment) the standard decimal number: 42

4 Convert back to your format: "forty two"

5 Print the result.

CSci 127 (Hunter) Lecture 12 July 2021 9 / 78

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Pseudocode same for both questions:

1 Get user input: "1001"

2 Convert to standard decimal number: 9

3 Add one (increment) the standard decimal number: 10

4 Convert back to your format: "1010"

5 Print the result.

CSci 127 (Hunter) Lecture 12 July 2021 10 / 78

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Pseudocode same for both questions:

1 Get user input: "1001"

2 Convert to standard decimal number: 9

3 Add one (increment) the standard decimal number: 10

4 Convert back to your format: "1010"

5 Print the result.

CSci 127 (Hunter) Lecture 12 July 2021 10 / 78

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Pseudocode same for both questions:

1 Get user input: "1001"

2 Convert to standard decimal number: 9

3 Add one (increment) the standard decimal number: 10

4 Convert back to your format: "1010"

5 Print the result.

CSci 127 (Hunter) Lecture 12 July 2021 10 / 78

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Pseudocode same for both questions:

1 Get user input: "1001"

2 Convert to standard decimal number: 9

3 Add one (increment) the standard decimal number: 10

4 Convert back to your format: "1010"

5 Print the result.

CSci 127 (Hunter) Lecture 12 July 2021 10 / 78

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Pseudocode same for both questions:

1 Get user input: "1001"

2 Convert to standard decimal number: 9

3 Add one (increment) the standard decimal number: 10

4 Convert back to your format: "1010"

5 Print the result.

CSci 127 (Hunter) Lecture 12 July 2021 10 / 78

Recap: Incrementer Design Challenge

Focus on: Convert to standard decimal number:

def convert2Decimal(numString):

#Start with one-digit numbers: zero,one,...,nine

if numString == "zero":

return(0)

elif numString == "one":

return(1)

elif numString == "two":

return(2)

else:

return(9)

Will this work?

CSci 127 (Hunter) Lecture 12 July 2021 11 / 78

Recap: Incrementer Design Challenge

Focus on: Convert to standard decimal number:
def convert2Decimal(numString):

#Start with one-digit numbers: zero,one,...,nine

if numString == "zero":

return(0)

elif numString == "one":

return(1)

elif numString == "two":

return(2)

else:

return(9)

Will this work?

CSci 127 (Hunter) Lecture 12 July 2021 11 / 78

Recap: Incrementer Design Challenge

Focus on: Convert to standard decimal number:
def convert2Decimal(numString):

#Start with one-digit numbers: zero,one,...,nine

if numString == "zero":

return(0)

elif numString == "one":

return(1)

elif numString == "two":

return(2)

else:

return(9)

Will this work?

CSci 127 (Hunter) Lecture 12 July 2021 11 / 78

Recap: Incrementer Design Challenge

Focus on: Convert to standard decimal number:
def convert2Decimal(numString):

#Start with one-digit numbers: zero,one,...,nine

if numString == "zero":

return(0)

elif numString == "one":

return(1)

elif numString == "two":

return(2)

else:

return(9)

Will this work?

CSci 127 (Hunter) Lecture 12 July 2021 11 / 78

Recap: Incrementer Design Challenge

Focus on: Convert to standard decimal number:
def convert2Decimal(numString):

#Start with one-digit numbers: zero,one,...,nine

if numString == "zero":

return(0)

elif numString == "one":

return(1)

elif numString == "two":

return(2)

else:

return(9)

Will this work?

CSci 127 (Hunter) Lecture 12 July 2021 11 / 78

Recap: Incrementer Design Challenge

Focus on: Convert to standard decimal number:
def convert2Decimal(numString):

#Start with one-digit numbers: zero,one,...,nine

if numString == "zero":

return(0)

elif numString == "one":

return(1)

elif numString == "two":

return(2)

else:

return(9)

Will this work?

CSci 127 (Hunter) Lecture 12 July 2021 11 / 78

Recap: Incrementer Design Challenge

Focus on: Convert to standard decimal number:
def convert2Decimal(numString):

#Start with one-digit numbers: zero,one,...,nine

if numString == "zero":

return(0)

elif numString == "one":

return(1)

elif numString == "two":

return(2)

else:

return(9)

Will this work?

CSci 127 (Hunter) Lecture 12 July 2021 11 / 78

Recap: Incrementer Design Challenge

Focus on: Convert to standard decimal number:
def convert2Decimal(numString):

#Start with one-digit numbers: zero,one,...,nine

if numString == "zero":

return(0)

elif numString == "one":

return(1)

elif numString == "two":

return(2)

else:

return(9)

Will this work?

CSci 127 (Hunter) Lecture 12 July 2021 11 / 78

Unit Testing: Incrementer Design Challenge

Focus on: Convert to standard decimal number:
def convert2Decimal(numString):

#Start with one-digit numbers: zero,one,...,nine

if numString == "zero":

return(0)

elif numString == "one":

return(1)

elif numString == "two":

return(2)

else:

return(9)

Will this work? What inputs would find the error(s)?

Unit Testing: testing individual units/functions/blocks of code to verify
correctness. Often automated (e.g. gradescope).

CSci 127 (Hunter) Lecture 12 July 2021 12 / 78

Unit Testing: Incrementer Design Challenge

Focus on: Convert to standard decimal number:
def convert2Decimal(numString):

#Start with one-digit numbers: zero,one,...,nine

if numString == "zero":

return(0)

elif numString == "one":

return(1)

elif numString == "two":

return(2)

else:

return(9)

Will this work? What inputs would find the error(s)?

Unit Testing: testing individual units/functions/blocks of code to verify
correctness.

Often automated (e.g. gradescope).

CSci 127 (Hunter) Lecture 12 July 2021 12 / 78

Unit Testing: Incrementer Design Challenge

Focus on: Convert to standard decimal number:
def convert2Decimal(numString):

#Start with one-digit numbers: zero,one,...,nine

if numString == "zero":

return(0)

elif numString == "one":

return(1)

elif numString == "two":

return(2)

else:

return(9)

Will this work? What inputs would find the error(s)?

Unit Testing: testing individual units/functions/blocks of code to verify
correctness. Often automated (e.g. gradescope).

CSci 127 (Hunter) Lecture 12 July 2021 12 / 78

Unit Testing: Incrementer Design Challenge

Unit Testing: testing individual units/functions/blocks of code to verify
correctness. Often automated (e.g. gradescope).

To test all branches of code, would need to test all inputs: "zero",
"one",..., "nine", & some bad inputs.

Also important to test edge cases.

If large, design automated tests that will “cover” as many branches as
possible and use randomly generated inputs:

names = ["zero","one",...,"nine"]

x = random.randrange(10)

if x == convert2Decimal(names[x]):

#PASS

else:

#FAIL

CSci 127 (Hunter) Lecture 12 July 2021 13 / 78

Unit Testing: Incrementer Design Challenge

Unit Testing: testing individual units/functions/blocks of code to verify
correctness. Often automated (e.g. gradescope).

To test all branches of code, would need to test all inputs: "zero",
"one",..., "nine", & some bad inputs.
Also important to test edge cases.

If large, design automated tests that will “cover” as many branches as
possible and use randomly generated inputs:

names = ["zero","one",...,"nine"]

x = random.randrange(10)

if x == convert2Decimal(names[x]):

#PASS

else:

#FAIL

CSci 127 (Hunter) Lecture 12 July 2021 13 / 78

Unit Testing: Incrementer Design Challenge

Unit Testing: testing individual units/functions/blocks of code to verify
correctness. Often automated (e.g. gradescope).

To test all branches of code, would need to test all inputs: "zero",
"one",..., "nine", & some bad inputs.
Also important to test edge cases.

If large, design automated tests that will “cover” as many branches as
possible and use randomly generated inputs:

names = ["zero","one",...,"nine"]

x = random.randrange(10)

if x == convert2Decimal(names[x]):

#PASS

else:

#FAIL

CSci 127 (Hunter) Lecture 12 July 2021 13 / 78

Unit Testing: Incrementer Design Challenge

Unit Testing: testing individual units/functions/blocks of code to verify
correctness. Often automated (e.g. gradescope).

To test all branches of code, would need to test all inputs: "zero",
"one",..., "nine", & some bad inputs.
Also important to test edge cases.

If large, design automated tests that will “cover” as many branches as
possible and use randomly generated inputs:

names = ["zero","one",...,"nine"]

x = random.randrange(10)

if x == convert2Decimal(names[x]):

#PASS

else:

#FAIL

CSci 127 (Hunter) Lecture 12 July 2021 13 / 78

Unit Testing: Incrementer Design Challenge

Unit Testing: testing individual units/functions/blocks of code to verify
correctness. Often automated (e.g. gradescope).

To test all branches of code, would need to test all inputs: "zero",
"one",..., "nine", & some bad inputs.
Also important to test edge cases.

If large, design automated tests that will “cover” as many branches as
possible and use randomly generated inputs:

names = ["zero","one",...,"nine"]

x = random.randrange(10)

if x == convert2Decimal(names[x]):

#PASS

else:

#FAIL

CSci 127 (Hunter) Lecture 12 July 2021 13 / 78

Unit Testing: Incrementer Design Challenge

Unit Testing: testing individual units/functions/blocks of code to verify
correctness. Often automated (e.g. gradescope).

To test all branches of code, would need to test all inputs: "zero",
"one",..., "nine", & some bad inputs.
Also important to test edge cases.

If large, design automated tests that will “cover” as many branches as
possible and use randomly generated inputs:

names = ["zero","one",...,"nine"]

x = random.randrange(10)

if x == convert2Decimal(names[x]):

#PASS

else:

#FAIL

CSci 127 (Hunter) Lecture 12 July 2021 13 / 78

Unit Testing: Incrementer Design Challenge

Unit Testing: testing individual units/functions/blocks of code to verify
correctness. Often automated (e.g. gradescope).

To test all branches of code, would need to test all inputs: "zero",
"one",..., "nine", & some bad inputs.
Also important to test edge cases.

If large, design automated tests that will “cover” as many branches as
possible and use randomly generated inputs:

names = ["zero","one",...,"nine"]

x = random.randrange(10)

if x == convert2Decimal(names[x]):

#PASS

else:

#FAIL

CSci 127 (Hunter) Lecture 12 July 2021 13 / 78

Unit Testing: Incrementer Design Challenge

Unit Testing: testing individual units/functions/blocks of code to verify
correctness. Often automated (e.g. gradescope).

To test all branches of code, would need to test all inputs: "zero",
"one",..., "nine", & some bad inputs.
Also important to test edge cases.

If large, design automated tests that will “cover” as many branches as
possible and use randomly generated inputs:

names = ["zero","one",...,"nine"]

x = random.randrange(10)

if x == convert2Decimal(names[x]):

#PASS

else:

#FAIL

CSci 127 (Hunter) Lecture 12 July 2021 13 / 78

Unit Testing: Incrementer Design Challenge

Unit Testing: testing individual units/functions/blocks of code to verify
correctness. Often automated (e.g. gradescope).

To test all branches of code, would need to test all inputs: "zero",
"one",..., "nine", & some bad inputs.
Also important to test edge cases.

If large, design automated tests that will “cover” as many branches as
possible and use randomly generated inputs:

names = ["zero","one",...,"nine"]

x = random.randrange(10)

if x == convert2Decimal(names[x]):

#PASS

else:

#FAIL

CSci 127 (Hunter) Lecture 12 July 2021 13 / 78

Today’s Topics

Recap: Incrementer Design Challenge

C++: Basic Format & Variables

I/O and Definite Loops in C++

Conditionals in C++

Indefinite Loops in C++

Recap: C++ & Python

More Info on the Final Exam

CSci 127 (Hunter) Lecture 12 July 2021 14 / 78

Challenge:

Using what you know from Python, predict what the C++ code will do:

CSci 127 (Hunter) Lecture 12 July 2021 15 / 78

onlinegdb demo

(Demo with onlinegdb)

CSci 127 (Hunter) Lecture 12 July 2021 16 / 78

Introduction to C++

C++ is a popular programming
language that extends C.

Fast, efficient, and powerful.

Used for systems programming
(and future courses!).

Today, we’ll introduce the basic
structure and simple input/output
(I/O) in C/C++.

CSci 127 (Hunter) Lecture 12 July 2021 17 / 78

Introduction to C++

C++ is a popular programming
language that extends C.

Fast, efficient, and powerful.

Used for systems programming
(and future courses!).

Today, we’ll introduce the basic
structure and simple input/output
(I/O) in C/C++.

CSci 127 (Hunter) Lecture 12 July 2021 17 / 78

Introduction to C++

C++ is a popular programming
language that extends C.

Fast, efficient, and powerful.

Used for systems programming
(and future courses!).

Today, we’ll introduce the basic
structure and simple input/output
(I/O) in C/C++.

CSci 127 (Hunter) Lecture 12 July 2021 17 / 78

Introduction to C++

C++ is a popular programming
language that extends C.

Fast, efficient, and powerful.

Used for systems programming
(and future courses!).

Today, we’ll introduce the basic
structure and simple input/output
(I/O) in C/C++.

CSci 127 (Hunter) Lecture 12 July 2021 17 / 78

Introduction to C++

Programs are organized in functions.

Example:

int main()

{
cout << "Hello world!";

return(0);

}

CSci 127 (Hunter) Lecture 12 July 2021 18 / 78

Introduction to C++

Programs are organized in functions.

Example:

int main()

{
cout << "Hello world!";

return(0);

}

CSci 127 (Hunter) Lecture 12 July 2021 18 / 78

Introduction to C++

Programs are organized in functions.

Example:

int main()

{
cout << "Hello world!";

return(0);

}

CSci 127 (Hunter) Lecture 12 July 2021 18 / 78

Introduction to C++

Programs are organized in functions.

Example:

int main()

{

cout << "Hello world!";

return(0);

}

CSci 127 (Hunter) Lecture 12 July 2021 18 / 78

Introduction to C++

Programs are organized in functions.

Example:

int main()

{
cout << "Hello world!";

return(0);

}

CSci 127 (Hunter) Lecture 12 July 2021 18 / 78

Introduction to C++

Programs are organized in functions.

Variables must be declared:
int num;

Many types available:
int, float, char, ...

Semicolons separate commands:
num = 5; more = 2*num;

To print, we’ll use cout <<:
cout << "Hello!!";

To get input, we’ll use cin >>:
cin >> num;

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12 July 2021 19 / 78

Introduction to C++

Programs are organized in functions.

Variables must be declared:

int num;

Many types available:
int, float, char, ...

Semicolons separate commands:
num = 5; more = 2*num;

To print, we’ll use cout <<:
cout << "Hello!!";

To get input, we’ll use cin >>:
cin >> num;

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12 July 2021 19 / 78

Introduction to C++

Programs are organized in functions.

Variables must be declared:
int num;

Many types available:
int, float, char, ...

Semicolons separate commands:
num = 5; more = 2*num;

To print, we’ll use cout <<:
cout << "Hello!!";

To get input, we’ll use cin >>:
cin >> num;

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12 July 2021 19 / 78

Introduction to C++

Programs are organized in functions.

Variables must be declared:
int num;

Many types available:
int, float, char, ...

Semicolons separate commands:
num = 5; more = 2*num;

To print, we’ll use cout <<:
cout << "Hello!!";

To get input, we’ll use cin >>:
cin >> num;

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12 July 2021 19 / 78

Introduction to C++

Programs are organized in functions.

Variables must be declared:
int num;

Many types available:
int, float, char, ...

Semicolons separate commands:

num = 5; more = 2*num;

To print, we’ll use cout <<:
cout << "Hello!!";

To get input, we’ll use cin >>:
cin >> num;

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12 July 2021 19 / 78

Introduction to C++

Programs are organized in functions.

Variables must be declared:
int num;

Many types available:
int, float, char, ...

Semicolons separate commands:
num = 5; more = 2*num;

To print, we’ll use cout <<:
cout << "Hello!!";

To get input, we’ll use cin >>:
cin >> num;

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12 July 2021 19 / 78

Introduction to C++

Programs are organized in functions.

Variables must be declared:
int num;

Many types available:
int, float, char, ...

Semicolons separate commands:
num = 5; more = 2*num;

To print, we’ll use cout <<:

cout << "Hello!!";

To get input, we’ll use cin >>:
cin >> num;

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12 July 2021 19 / 78

Introduction to C++

Programs are organized in functions.

Variables must be declared:
int num;

Many types available:
int, float, char, ...

Semicolons separate commands:
num = 5; more = 2*num;

To print, we’ll use cout <<:
cout << "Hello!!";

To get input, we’ll use cin >>:
cin >> num;

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12 July 2021 19 / 78

Introduction to C++

Programs are organized in functions.

Variables must be declared:
int num;

Many types available:
int, float, char, ...

Semicolons separate commands:
num = 5; more = 2*num;

To print, we’ll use cout <<:
cout << "Hello!!";

To get input, we’ll use cin >>:

cin >> num;

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12 July 2021 19 / 78

Introduction to C++

Programs are organized in functions.

Variables must be declared:
int num;

Many types available:
int, float, char, ...

Semicolons separate commands:
num = 5; more = 2*num;

To print, we’ll use cout <<:
cout << "Hello!!";

To get input, we’ll use cin >>:
cin >> num;

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12 July 2021 19 / 78

Introduction to C++

Programs are organized in functions.

Variables must be declared:
int num;

Many types available:
int, float, char, ...

Semicolons separate commands:
num = 5; more = 2*num;

To print, we’ll use cout <<:
cout << "Hello!!";

To get input, we’ll use cin >>:
cin >> num;

To use those I/O functions, we put at
the top of the program:

#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12 July 2021 19 / 78

Introduction to C++

Programs are organized in functions.

Variables must be declared:
int num;

Many types available:
int, float, char, ...

Semicolons separate commands:
num = 5; more = 2*num;

To print, we’ll use cout <<:
cout << "Hello!!";

To get input, we’ll use cin >>:
cin >> num;

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12 July 2021 19 / 78

Challenge:

Predict what the following pieces of code will do:

CSci 127 (Hunter) Lecture 12 July 2021 20 / 78

Side Note: gdb

gdb.org

Part of Richard Stallman’s “GNU is Not
Unix” (GNU) project.

Written in 1986, gdb is the GNU debugger
and based on dbx from the Berkeley
Distribution of Unix.

Lightweight, widely-available program that
allows you to “step through” your code
line-by-line.

Available on-line (onlinegdb.com) or
follow installation instructions in Lab 12.

CSci 127 (Hunter) Lecture 12 July 2021 21 / 78

Side Note: gdb

gdb.org

Part of Richard Stallman’s “GNU is Not
Unix” (GNU) project.

Written in 1986, gdb is the GNU debugger
and based on dbx from the Berkeley
Distribution of Unix.

Lightweight, widely-available program that
allows you to “step through” your code
line-by-line.

Available on-line (onlinegdb.com) or
follow installation instructions in Lab 12.

CSci 127 (Hunter) Lecture 12 July 2021 21 / 78

Side Note: gdb

gdb.org

Part of Richard Stallman’s “GNU is Not
Unix” (GNU) project.

Written in 1986, gdb is the GNU debugger
and based on dbx from the Berkeley
Distribution of Unix.

Lightweight, widely-available program that
allows you to “step through” your code
line-by-line.

Available on-line (onlinegdb.com) or
follow installation instructions in Lab 12.

CSci 127 (Hunter) Lecture 12 July 2021 21 / 78

Side Note: gdb

gdb.org

Part of Richard Stallman’s “GNU is Not
Unix” (GNU) project.

Written in 1986, gdb is the GNU debugger
and based on dbx from the Berkeley
Distribution of Unix.

Lightweight, widely-available program that
allows you to “step through” your code
line-by-line.

Available on-line (onlinegdb.com) or
follow installation instructions in Lab 12.

CSci 127 (Hunter) Lecture 12 July 2021 21 / 78

C++ Demo

(Demo with onlinegdb)

CSci 127 (Hunter) Lecture 12 July 2021 22 / 78

Challenge:...

Convert the C++ code to a Python program:

CSci 127 (Hunter) Lecture 12 July 2021 23 / 78

Python Tutor

Convert the C++ code to a Python program:

(Write from scratch in pythonTutor.)

CSci 127 (Hunter) Lecture 12 July 2021 24 / 78

Today’s Topics

Recap: Incrementer Design Challenge

C++: Basic Format & Variables

I/O and Definite Loops in C++

Conditionals in C++

Indefinite Loops in C++

Recap: C++ & Python

More Info on the Final Exam

CSci 127 (Hunter) Lecture 12 July 2021 25 / 78

Challenge:
Predict what the following pieces of code will do:

CSci 127 (Hunter) Lecture 12 July 2021 26 / 78

C++ Demo

(Demo with onlinegdb)

CSci 127 (Hunter) Lecture 12 July 2021 27 / 78

Definite loops

General format:

for (initialization ; test ; updateAction)
{

command1;
command2;
command3;
...

}

CSci 127 (Hunter) Lecture 12 July 2021 28 / 78

Challenge:
Predict what the following pieces of code will do:

CSci 127 (Hunter) Lecture 12 July 2021 29 / 78

C++ Demo

(Demo with onlinegdb)

CSci 127 (Hunter) Lecture 12 July 2021 30 / 78

Challenge:

Predict what the following pieces of code will do:

CSci 127 (Hunter) Lecture 12 July 2021 31 / 78

Challenge:

Translate the C++ program into Python:

CSci 127 (Hunter) Lecture 12 July 2021 32 / 78

Recap: Basic Form & I/O in C++

Efficient for systems programming.

Programs are organized in functions.

Must declare variables: int num;

Many types available:
int, float, char, ...

To print: cout << "Hello!!";

To get input: cin >> num;

To use those I/O functions:
#include <iostream>
using namespace std;

Definite loops:
for (i = 0; i < 10; i++) {...}
Blocks of code uses ‘{’ and ’}’.

Commands generally end in ‘;’.

CSci 127 (Hunter) Lecture 12 July 2021 33 / 78

Recap: Basic Form & I/O in C++

Efficient for systems programming.

Programs are organized in functions.

Must declare variables: int num;

Many types available:
int, float, char, ...

To print: cout << "Hello!!";

To get input: cin >> num;

To use those I/O functions:
#include <iostream>
using namespace std;

Definite loops:
for (i = 0; i < 10; i++) {...}
Blocks of code uses ‘{’ and ’}’.

Commands generally end in ‘;’.

CSci 127 (Hunter) Lecture 12 July 2021 33 / 78

Recap: Basic Form & I/O in C++

Efficient for systems programming.

Programs are organized in functions.

Must declare variables:

int num;

Many types available:
int, float, char, ...

To print: cout << "Hello!!";

To get input: cin >> num;

To use those I/O functions:
#include <iostream>
using namespace std;

Definite loops:
for (i = 0; i < 10; i++) {...}
Blocks of code uses ‘{’ and ’}’.

Commands generally end in ‘;’.

CSci 127 (Hunter) Lecture 12 July 2021 33 / 78

Recap: Basic Form & I/O in C++

Efficient for systems programming.

Programs are organized in functions.

Must declare variables: int num;

Many types available:
int, float, char, ...

To print: cout << "Hello!!";

To get input: cin >> num;

To use those I/O functions:
#include <iostream>
using namespace std;

Definite loops:
for (i = 0; i < 10; i++) {...}
Blocks of code uses ‘{’ and ’}’.

Commands generally end in ‘;’.

CSci 127 (Hunter) Lecture 12 July 2021 33 / 78

Recap: Basic Form & I/O in C++

Efficient for systems programming.

Programs are organized in functions.

Must declare variables: int num;

Many types available:

int, float, char, ...

To print: cout << "Hello!!";

To get input: cin >> num;

To use those I/O functions:
#include <iostream>
using namespace std;

Definite loops:
for (i = 0; i < 10; i++) {...}
Blocks of code uses ‘{’ and ’}’.

Commands generally end in ‘;’.

CSci 127 (Hunter) Lecture 12 July 2021 33 / 78

Recap: Basic Form & I/O in C++

Efficient for systems programming.

Programs are organized in functions.

Must declare variables: int num;

Many types available:
int, float, char, ...

To print: cout << "Hello!!";

To get input: cin >> num;

To use those I/O functions:
#include <iostream>
using namespace std;

Definite loops:
for (i = 0; i < 10; i++) {...}
Blocks of code uses ‘{’ and ’}’.

Commands generally end in ‘;’.

CSci 127 (Hunter) Lecture 12 July 2021 33 / 78

Recap: Basic Form & I/O in C++

Efficient for systems programming.

Programs are organized in functions.

Must declare variables: int num;

Many types available:
int, float, char, ...

To print:

cout << "Hello!!";

To get input: cin >> num;

To use those I/O functions:
#include <iostream>
using namespace std;

Definite loops:
for (i = 0; i < 10; i++) {...}
Blocks of code uses ‘{’ and ’}’.

Commands generally end in ‘;’.

CSci 127 (Hunter) Lecture 12 July 2021 33 / 78

Recap: Basic Form & I/O in C++

Efficient for systems programming.

Programs are organized in functions.

Must declare variables: int num;

Many types available:
int, float, char, ...

To print: cout << "Hello!!";

To get input: cin >> num;

To use those I/O functions:
#include <iostream>
using namespace std;

Definite loops:
for (i = 0; i < 10; i++) {...}
Blocks of code uses ‘{’ and ’}’.

Commands generally end in ‘;’.

CSci 127 (Hunter) Lecture 12 July 2021 33 / 78

Recap: Basic Form & I/O in C++

Efficient for systems programming.

Programs are organized in functions.

Must declare variables: int num;

Many types available:
int, float, char, ...

To print: cout << "Hello!!";

To get input:

cin >> num;

To use those I/O functions:
#include <iostream>
using namespace std;

Definite loops:
for (i = 0; i < 10; i++) {...}
Blocks of code uses ‘{’ and ’}’.

Commands generally end in ‘;’.

CSci 127 (Hunter) Lecture 12 July 2021 33 / 78

Recap: Basic Form & I/O in C++

Efficient for systems programming.

Programs are organized in functions.

Must declare variables: int num;

Many types available:
int, float, char, ...

To print: cout << "Hello!!";

To get input: cin >> num;

To use those I/O functions:
#include <iostream>
using namespace std;

Definite loops:
for (i = 0; i < 10; i++) {...}
Blocks of code uses ‘{’ and ’}’.

Commands generally end in ‘;’.

CSci 127 (Hunter) Lecture 12 July 2021 33 / 78

Recap: Basic Form & I/O in C++

Efficient for systems programming.

Programs are organized in functions.

Must declare variables: int num;

Many types available:
int, float, char, ...

To print: cout << "Hello!!";

To get input: cin >> num;

To use those I/O functions:

#include <iostream>
using namespace std;

Definite loops:
for (i = 0; i < 10; i++) {...}
Blocks of code uses ‘{’ and ’}’.

Commands generally end in ‘;’.

CSci 127 (Hunter) Lecture 12 July 2021 33 / 78

Recap: Basic Form & I/O in C++

Efficient for systems programming.

Programs are organized in functions.

Must declare variables: int num;

Many types available:
int, float, char, ...

To print: cout << "Hello!!";

To get input: cin >> num;

To use those I/O functions:
#include <iostream>
using namespace std;

Definite loops:
for (i = 0; i < 10; i++) {...}
Blocks of code uses ‘{’ and ’}’.

Commands generally end in ‘;’.

CSci 127 (Hunter) Lecture 12 July 2021 33 / 78

Recap: Basic Form & I/O in C++

Efficient for systems programming.

Programs are organized in functions.

Must declare variables: int num;

Many types available:
int, float, char, ...

To print: cout << "Hello!!";

To get input: cin >> num;

To use those I/O functions:
#include <iostream>
using namespace std;

Definite loops:

for (i = 0; i < 10; i++) {...}
Blocks of code uses ‘{’ and ’}’.

Commands generally end in ‘;’.

CSci 127 (Hunter) Lecture 12 July 2021 33 / 78

Recap: Basic Form & I/O in C++

Efficient for systems programming.

Programs are organized in functions.

Must declare variables: int num;

Many types available:
int, float, char, ...

To print: cout << "Hello!!";

To get input: cin >> num;

To use those I/O functions:
#include <iostream>
using namespace std;

Definite loops:
for (i = 0; i < 10; i++) {...}

Blocks of code uses ‘{’ and ’}’.

Commands generally end in ‘;’.

CSci 127 (Hunter) Lecture 12 July 2021 33 / 78

Recap: Basic Form & I/O in C++

Efficient for systems programming.

Programs are organized in functions.

Must declare variables: int num;

Many types available:
int, float, char, ...

To print: cout << "Hello!!";

To get input: cin >> num;

To use those I/O functions:
#include <iostream>
using namespace std;

Definite loops:
for (i = 0; i < 10; i++) {...}
Blocks of code uses ‘{’ and ’}’.

Commands generally end in ‘;’.

CSci 127 (Hunter) Lecture 12 July 2021 33 / 78

Recap: Basic Form & I/O in C++

Efficient for systems programming.

Programs are organized in functions.

Must declare variables: int num;

Many types available:
int, float, char, ...

To print: cout << "Hello!!";

To get input: cin >> num;

To use those I/O functions:
#include <iostream>
using namespace std;

Definite loops:
for (i = 0; i < 10; i++) {...}
Blocks of code uses ‘{’ and ’}’.

Commands generally end in ‘;’.

CSci 127 (Hunter) Lecture 12 July 2021 33 / 78

Today’s Topics

Recap: Incrementer Design Challenge

C++: Basic Format & Variables

I/O and Definite Loops in C++

Conditionals in C++

Indefinite Loops in C++

Recap: C++ & Python

More Info on the Final Exam

CSci 127 (Hunter) Lecture 12 July 2021 34 / 78

Challenge:
Predict what the following pieces of code will do:

CSci 127 (Hunter) Lecture 12 July 2021 35 / 78

C++ Demo

(Demo with onlinegdb)

CSci 127 (Hunter) Lecture 12 July 2021 36 / 78

Conditionals

General format:

if (logical expression)
{

command1;
...

}
else if (logical expression)
{

command1;
...

}
else

{
command1;
...

}

CSci 127 (Hunter) Lecture 12 July 2021 37 / 78

Logical Operators in C++

Very similar, just different names: &&, ||, and !:

and (&&)

in1 in2 returns:
False && False False

False && True False

True && False False

True && True True

or (||)

in1 in2 returns:
False || False False

False || True True

True || False True

True || True True

not (!)

in1 returns:
! False True

! True False

CSci 127 (Hunter) Lecture 12 July 2021 38 / 78

Logical Operators in C++

Very similar, just different names: &&, ||, and !:

and (&&)

in1 in2 returns:
False && False False

False && True False

True && False False

True && True True

or (||)

in1 in2 returns:
False || False False

False || True True

True || False True

True || True True

not (!)

in1 returns:
! False True

! True False

CSci 127 (Hunter) Lecture 12 July 2021 38 / 78

Logical Operators in C++

Very similar, just different names: &&, ||, and !:

and (&&)

in1 in2 returns:
False && False False

False && True False

True && False False

True && True True

or (||)

in1 in2 returns:
False || False False

False || True True

True || False True

True || True True

not (!)

in1 returns:
! False True

! True False

CSci 127 (Hunter) Lecture 12 July 2021 38 / 78

Logical Operators in C++

Very similar, just different names: &&, ||, and !:

and (&&)

in1 in2 returns:
False && False False

False && True False

True && False False

True && True True

or (||)

in1 in2 returns:
False || False False

False || True True

True || False True

True || True True

not (!)

in1 returns:
! False True

! True False

CSci 127 (Hunter) Lecture 12 July 2021 38 / 78

Today’s Topics

Recap: Incrementer Design Challenge

C++: Basic Format & Variables

I/O and Definite Loops in C++

Conditionals in C++

Indefinite Loops in C++

Recap: C++ & Python

More Info on the Final Exam

CSci 127 (Hunter) Lecture 12 July 2021 39 / 78

Challenge:
Predict what the following pieces of code will do:

CSci 127 (Hunter) Lecture 12 July 2021 40 / 78

C++ Demo

(Demo with onlinegdb)

CSci 127 (Hunter) Lecture 12 July 2021 41 / 78

Indefinite Loops: while

General format:

while (logical expression)
{

command1;
command2;
command3;
...

}

CSci 127 (Hunter) Lecture 12 July 2021 42 / 78

Challenge:
Predict what the following piece of code will do:

CSci 127 (Hunter) Lecture 12 July 2021 43 / 78

C++ Demo

(Demo with onlinegdb)

CSci 127 (Hunter) Lecture 12 July 2021 44 / 78

Indefinite Loops: while

General format:

while (logical expression)
{

command1;
command2;
command3;
...

}

CSci 127 (Hunter) Lecture 12 July 2021 45 / 78

Challenge:
Predict what the following pieces of code will do:

CSci 127 (Hunter) Lecture 12 July 2021 46 / 78

C++ Demo

(Demo with onlinegdb)

CSci 127 (Hunter) Lecture 12 July 2021 47 / 78

Indefinite Loops: do-while

General format:

do

{
command1;
command2;
command3;
...

} while (logical expression);

CSci 127 (Hunter) Lecture 12 July 2021 48 / 78

Today’s Topics

Recap: Incrementer Design Challenge

C++: Basic Format & Variables

I/O and Definite Loops in C++

Conditionals in C++

Indefinite Loops in C++

Recap: C++ & Python

More Info on the Final Exam

CSci 127 (Hunter) Lecture 12 July 2021 49 / 78

Recap: C++ Control Structures
I/O:

cin >> ...; & cout << ...;

Definite loops:
for (i = 0; i < 10; i++)

{
...

}
Conditionals:
if (logical expression)
{

...
}
else

{
...

}
Indefinite loops:
while (logical expression)
{

...
}

CSci 127 (Hunter) Lecture 12 July 2021 50 / 78

Recap: C++ Control Structures
I/O: cin >> ...;

& cout << ...;

Definite loops:
for (i = 0; i < 10; i++)

{
...

}
Conditionals:
if (logical expression)
{

...
}
else

{
...

}
Indefinite loops:
while (logical expression)
{

...
}

CSci 127 (Hunter) Lecture 12 July 2021 50 / 78

Recap: C++ Control Structures
I/O: cin >> ...; & cout << ...;

Definite loops:
for (i = 0; i < 10; i++)

{
...

}
Conditionals:
if (logical expression)
{

...
}
else

{
...

}
Indefinite loops:
while (logical expression)
{

...
}

CSci 127 (Hunter) Lecture 12 July 2021 50 / 78

Recap: C++ Control Structures
I/O: cin >> ...; & cout << ...;

Definite loops:

for (i = 0; i < 10; i++)

{
...

}
Conditionals:
if (logical expression)
{

...
}
else

{
...

}
Indefinite loops:
while (logical expression)
{

...
}

CSci 127 (Hunter) Lecture 12 July 2021 50 / 78

Recap: C++ Control Structures
I/O: cin >> ...; & cout << ...;

Definite loops:
for (i = 0; i < 10; i++)

{
...

}

Conditionals:
if (logical expression)
{

...
}
else

{
...

}
Indefinite loops:
while (logical expression)
{

...
}

CSci 127 (Hunter) Lecture 12 July 2021 50 / 78

Recap: C++ Control Structures
I/O: cin >> ...; & cout << ...;

Definite loops:
for (i = 0; i < 10; i++)

{
...

}
Conditionals:

if (logical expression)
{

...
}
else

{
...

}
Indefinite loops:
while (logical expression)
{

...
}

CSci 127 (Hunter) Lecture 12 July 2021 50 / 78

Recap: C++ Control Structures
I/O: cin >> ...; & cout << ...;

Definite loops:
for (i = 0; i < 10; i++)

{
...

}
Conditionals:
if (logical expression)
{

...
}
else

{
...

}

Indefinite loops:
while (logical expression)
{

...
}

CSci 127 (Hunter) Lecture 12 July 2021 50 / 78

Recap: C++ Control Structures
I/O: cin >> ...; & cout << ...;

Definite loops:
for (i = 0; i < 10; i++)

{
...

}
Conditionals:
if (logical expression)
{

...
}
else

{
...

}
Indefinite loops:

while (logical expression)
{

...
}

CSci 127 (Hunter) Lecture 12 July 2021 50 / 78

Recap: C++ Control Structures
I/O: cin >> ...; & cout << ...;

Definite loops:
for (i = 0; i < 10; i++)

{
...

}
Conditionals:
if (logical expression)
{

...
}
else

{
...

}
Indefinite loops:
while (logical expression)
{

...
}

CSci 127 (Hunter) Lecture 12 July 2021 50 / 78

Challenge: Definite Loops in Python & C++

Rewrite this program in C++:

for i in range(2017, 2000, -2):

print("Year is", i)

Rewrite this program in Python:

#include <iostream>
using namespace std;

int main()

{
for (int i = 1; i < 50; i++)

{
cout << i << endl;

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 51 / 78

Challenge: Definite Loops in Python & C++

Rewrite this program in C++:

for i in range(2017, 2000, -2):

print("Year is", i)

#include <iostream>
using namespace std;

int main()

{
for (int i = 2017; i > 2000; i=i-2)

{
cout << "Year is " << i << endl;

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 52 / 78

Challenge: Definite Loops in Python & C++

Rewrite this program in C++:

for i in range(2017, 2000, -2):

print("Year is", i)

#include <iostream>
using namespace std;

int main()

{
for (int i = 2017; i > 2000; i=i-2)

{
cout << "Year is " << i << endl;

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 52 / 78

Challenge: Definite Loops in Python & C++

Rewrite this program in C++:

for i in range(2017, 2000, -2):

print("Year is", i)

#include <iostream>
using namespace std;

int main()

{
for (int i = 2017; i > 2000; i=i-2)

{
cout << "Year is " << i << endl;

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 52 / 78

Challenge: Definite Loops in Python & C++

Rewrite this program in C++:

for i in range(2017, 2000, -2):

print("Year is", i)

#include <iostream>
using namespace std;

int main()

{

for (int i = 2017; i > 2000; i=i-2)

{
cout << "Year is " << i << endl;

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 52 / 78

Challenge: Definite Loops in Python & C++

Rewrite this program in C++:

for i in range(2017, 2000, -2):

print("Year is", i)

#include <iostream>
using namespace std;

int main()

{
for (int i = 2017; i > 2000; i=i-2)

{
cout << "Year is " << i << endl;

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 52 / 78

Challenge: Definite Loops in Python & C++

Rewrite this program in C++:

for i in range(2017, 2000, -2):

print("Year is", i)

#include <iostream>
using namespace std;

int main()

{
for (int i = 2017; i > 2000; i=i-2)

{
cout << "Year is " << i << endl;

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 52 / 78

Challenge: Definite Loops in Python & C++

Rewrite this program in C++:

for i in range(2017, 2000, -2):

print("Year is", i)

#include <iostream>
using namespace std;

int main()

{
for (int i = 2017; i > 2000; i=i-2)

{
cout << "Year is " << i << endl;

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 52 / 78

Challenge: Definite Loops in Python & C++

Rewrite this program in Python:

#include <iostream>
using namespace std;

int main()

{
for (int i = 1; i < 50; i++)

{
cout << i << endl;

}
return 0;

}

for i in range(1, 50):

print(i)

CSci 127 (Hunter) Lecture 12 July 2021 53 / 78

Challenge: Definite Loops in Python & C++

Rewrite this program in Python:

#include <iostream>
using namespace std;

int main()

{
for (int i = 1; i < 50; i++)

{
cout << i << endl;

}
return 0;

}

for i in range(1, 50):

print(i)

CSci 127 (Hunter) Lecture 12 July 2021 53 / 78

Challenge: Definite Loops in Python & C++

Rewrite this program in Python:

#include <iostream>
using namespace std;

int main()

{
for (int i = 1; i < 50; i++)

{
cout << i << endl;

}
return 0;

}

for i in range(1, 50):

print(i)

CSci 127 (Hunter) Lecture 12 July 2021 53 / 78

Challenge: Conditionals in Python & C++

Python: what is the output?
year = 2016

if year % 4 == 0 and \
(not (year % 100 == 0) or (year % 400 == 0)):

print("Leap!!")

print("Year")

Write a C++ program that asks the user the number of times they plan to
ride transit this week. Your program should then print if it is cheaper to buy
single ride metro cards or 7-day unlimited card.
(The 7-day card is $33.00, and the cost of single ride, with bonus, is $2.75).

CSci 127 (Hunter) Lecture 12 July 2021 54 / 78

Challenge: Conditionals in Python & C++

Python: what is the output?
year = 2016

if year % 4 == 0 and \
(not (year % 100 == 0) or (year % 400 == 0)):

print("Leap!!")

print("Year")

year = 2016

if TRUE and \
(not (year % 100 == 0) or (year % 400 == 0)):

print("Leap!!")

print("Year")

CSci 127 (Hunter) Lecture 12 July 2021 55 / 78

Challenge: Conditionals in Python & C++

Python: what is the output?
year = 2016

if year % 4 == 0 and \
(not (year % 100 == 0) or (year % 400 == 0)):

print("Leap!!")

print("Year") year = 2016

if TRUE and \
(not (year % 100 == 0) or (year % 400 == 0)):

print("Leap!!")

print("Year")

CSci 127 (Hunter) Lecture 12 July 2021 55 / 78

Challenge: Conditionals in Python & C++

Python: what is the output?
year = 2016

if year % 4 == 0 and \
(not (year % 100 == 0) or (year % 400 == 0)):

print("Leap!!")

print("Year")

year = 2016

if TRUE and \
(not FALSE or (year % 400 == 0)):

print("Leap!!")

print("Year")

CSci 127 (Hunter) Lecture 12 July 2021 56 / 78

Challenge: Conditionals in Python & C++

Python: what is the output?
year = 2016

if year % 4 == 0 and \
(not (year % 100 == 0) or (year % 400 == 0)):

print("Leap!!")

print("Year")

year = 2016

if TRUE and \
(not FALSE or (year % 400 == 0)):

print("Leap!!")

print("Year")

CSci 127 (Hunter) Lecture 12 July 2021 56 / 78

Challenge: Conditionals in Python & C++

Python: what is the output?
year = 2016

if year % 4 == 0 and \
(not (year % 100 == 0) or (year % 400 == 0)):

print("Leap!!")

print("Year")

year = 2016

if TRUE and \
(TRUE or (year % 400 == 0)):

print("Leap!!")

print("Year")

CSci 127 (Hunter) Lecture 12 July 2021 57 / 78

Challenge: Conditionals in Python & C++

Python: what is the output?
year = 2016

if year % 4 == 0 and \
(not (year % 100 == 0) or (year % 400 == 0)):

print("Leap!!")

print("Year")

year = 2016

if TRUE and \
(TRUE or (year % 400 == 0)):

print("Leap!!")

print("Year")

CSci 127 (Hunter) Lecture 12 July 2021 57 / 78

Challenge: Conditionals in Python & C++

Python: what is the output?
year = 2016

if year % 4 == 0 and \
(not (year % 100 == 0) or (year % 400 == 0)):

print("Leap!!")

print("Year")

year = 2016

if TRUE and \
(TRUE or FALSE):

print("Leap!!")

print("Year")

CSci 127 (Hunter) Lecture 12 July 2021 58 / 78

Challenge: Conditionals in Python & C++

Python: what is the output?
year = 2016

if year % 4 == 0 and \
(not (year % 100 == 0) or (year % 400 == 0)):

print("Leap!!")

print("Year")

year = 2016

if TRUE and \
(TRUE or FALSE):

print("Leap!!")

print("Year")

CSci 127 (Hunter) Lecture 12 July 2021 58 / 78

Challenge: Conditionals in Python & C++

Python: what is the output?
year = 2016

if year % 4 == 0 and \
(not (year % 100 == 0) or (year % 400 == 0)):

print("Leap!!")

print("Year")

year = 2016

if TRUE and \
(TRUE or FALSE):

print("Leap!!")

print("Year")

CSci 127 (Hunter) Lecture 12 July 2021 59 / 78

Challenge: Conditionals in Python & C++

Python: what is the output?
year = 2016

if year % 4 == 0 and \
(not (year % 100 == 0) or (year % 400 == 0)):

print("Leap!!")

print("Year")

year = 2016

if TRUE and \
(TRUE):

print("Leap!!")

print("Year")

CSci 127 (Hunter) Lecture 12 July 2021 60 / 78

Challenge: Conditionals in Python & C++

Python: what is the output?
year = 2016

if year % 4 == 0 and \
(not (year % 100 == 0) or (year % 400 == 0)):

print("Leap!!")

print("Year")

year = 2016

if TRUE:

print("Leap!!")

print("Year")

Prints: Leap!

Year

CSci 127 (Hunter) Lecture 12 July 2021 61 / 78

Challenge: Conditionals in Python & C++

Python: what is the output?
year = 2016

if year % 4 == 0 and \
(not (year % 100 == 0) or (year % 400 == 0)):

print("Leap!!")

print("Year")

year = 2016

if TRUE:

print("Leap!!")

print("Year")

Prints: Leap!

Year

CSci 127 (Hunter) Lecture 12 July 2021 61 / 78

Challenge: Conditionals in Python & C++

Your program should then print if it is cheaper to buy single ride metro cards
($2.75 per ride) or 7-day unlimited card ($33.00).

#include <iostream>
using namespace std;

int main()

{
int rides;

cout << "Enter number of rides:";

cin >> rides;

if (2.75 * rides < 33.00)

{
cout << "Cheaper to buy single ride metro cards.\n";

}
else

{
cout << "Cheaper to buy 7-day unlimited card.\n";

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 62 / 78

Challenge: Conditionals in Python & C++

Your program should then print if it is cheaper to buy single ride metro cards
($2.75 per ride) or 7-day unlimited card ($33.00).

#include <iostream>
using namespace std;

int main()

{
int rides;

cout << "Enter number of rides:";

cin >> rides;

if (2.75 * rides < 33.00)

{
cout << "Cheaper to buy single ride metro cards.\n";

}
else

{
cout << "Cheaper to buy 7-day unlimited card.\n";

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 62 / 78

Challenge: Conditionals in Python & C++

Your program should then print if it is cheaper to buy single ride metro cards
($2.75 per ride) or 7-day unlimited card ($33.00).

#include <iostream>
using namespace std;

int main()

{
int rides;

cout << "Enter number of rides:";

cin >> rides;

if (2.75 * rides < 33.00)

{
cout << "Cheaper to buy single ride metro cards.\n";

}
else

{
cout << "Cheaper to buy 7-day unlimited card.\n";

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 62 / 78

Challenge: Conditionals in Python & C++

Your program should then print if it is cheaper to buy single ride metro cards
($2.75 per ride) or 7-day unlimited card ($33.00).

#include <iostream>
using namespace std;

int main()

{
int rides;

cout << "Enter number of rides:";

cin >> rides;

if (2.75 * rides < 33.00)

{
cout << "Cheaper to buy single ride metro cards.\n";

}
else

{
cout << "Cheaper to buy 7-day unlimited card.\n";

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 62 / 78

Challenge: Conditionals in Python & C++

Your program should then print if it is cheaper to buy single ride metro cards
($2.75 per ride) or 7-day unlimited card ($33.00).

#include <iostream>
using namespace std;

int main()

{
int rides;

cout << "Enter number of rides:";

cin >> rides;

if (2.75 * rides < 33.00)

{
cout << "Cheaper to buy single ride metro cards.\n";

}
else

{
cout << "Cheaper to buy 7-day unlimited card.\n";

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 62 / 78

Challenge: Conditionals in Python & C++

Your program should then print if it is cheaper to buy single ride metro cards
($2.75 per ride) or 7-day unlimited card ($33.00).

#include <iostream>
using namespace std;

int main()

{
int rides;

cout << "Enter number of rides:";

cin >> rides;

if (2.75 * rides < 33.00)

{
cout << "Cheaper to buy single ride metro cards.\n";

}
else

{
cout << "Cheaper to buy 7-day unlimited card.\n";

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 62 / 78

Challenge: Conditionals in Python & C++

Your program should then print if it is cheaper to buy single ride metro cards
($2.75 per ride) or 7-day unlimited card ($33.00).

#include <iostream>
using namespace std;

int main()

{
int rides;

cout << "Enter number of rides:";

cin >> rides;

if (2.75 * rides < 33.00)

{
cout << "Cheaper to buy single ride metro cards.\n";

}

else

{
cout << "Cheaper to buy 7-day unlimited card.\n";

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 62 / 78

Challenge: Conditionals in Python & C++

Your program should then print if it is cheaper to buy single ride metro cards
($2.75 per ride) or 7-day unlimited card ($33.00).

#include <iostream>
using namespace std;

int main()

{
int rides;

cout << "Enter number of rides:";

cin >> rides;

if (2.75 * rides < 33.00)

{
cout << "Cheaper to buy single ride metro cards.\n";

}
else

{
cout << "Cheaper to buy 7-day unlimited card.\n";

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 62 / 78

Challenge: Conditionals in Python & C++

Your program should then print if it is cheaper to buy single ride metro cards
($2.75 per ride) or 7-day unlimited card ($33.00).

#include <iostream>
using namespace std;

int main()

{
int rides;

cout << "Enter number of rides:";

cin >> rides;

if (2.75 * rides < 33.00)

{
cout << "Cheaper to buy single ride metro cards.\n";

}
else

{
cout << "Cheaper to buy 7-day unlimited card.\n";

}

return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 62 / 78

Challenge: Conditionals in Python & C++

Your program should then print if it is cheaper to buy single ride metro cards
($2.75 per ride) or 7-day unlimited card ($33.00).

#include <iostream>
using namespace std;

int main()

{
int rides;

cout << "Enter number of rides:";

cin >> rides;

if (2.75 * rides < 33.00)

{
cout << "Cheaper to buy single ride metro cards.\n";

}
else

{
cout << "Cheaper to buy 7-day unlimited card.\n";

}
return 0;

}
CSci 127 (Hunter) Lecture 12 July 2021 62 / 78

Challenge: Indefinite Loops in Python & C++

Write Python code that repeatedly prompts for a non-empty string.

Write C++ code that repeatedly prompts until an odd number is entered.

CSci 127 (Hunter) Lecture 12 July 2021 63 / 78

Challenge: Indefinite Loops in Python & C++

Write Python code that repeatedly prompts for a non-empty string.

s = ""

while s == "":

s = input("Enter a non-empty string: ")

print("You entered: ", s)

Write C++ code that repeatedly prompts until an odd number is entered.

#include <iostream>
using namespace std;

int main()

{
int num = 0;

while (num % 2 == 0)

{
cout << "Enter an odd number:";

cin >> num;

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 64 / 78

Challenge: Indefinite Loops in Python & C++

Write Python code that repeatedly prompts for a non-empty string.

s = ""

while s == "":

s = input("Enter a non-empty string: ")

print("You entered: ", s)

Write C++ code that repeatedly prompts until an odd number is entered.

#include <iostream>
using namespace std;

int main()

{
int num = 0;

while (num % 2 == 0)

{
cout << "Enter an odd number:";

cin >> num;

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 64 / 78

Challenge: Indefinite Loops in Python & C++

Write Python code that repeatedly prompts for a non-empty string.

s = ""

while s == "":

s = input("Enter a non-empty string: ")

print("You entered: ", s)

Write C++ code that repeatedly prompts until an odd number is entered.

#include <iostream>
using namespace std;

int main()

{
int num = 0;

while (num % 2 == 0)

{
cout << "Enter an odd number:";

cin >> num;

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 64 / 78

Challenge: Indefinite Loops in Python & C++

Write Python code that repeatedly prompts for a non-empty string.

s = ""

while s == "":

s = input("Enter a non-empty string: ")

print("You entered: ", s)

Write C++ code that repeatedly prompts until an odd number is entered.

#include <iostream>
using namespace std;

int main()

{
int num = 0;

while (num % 2 == 0)

{
cout << "Enter an odd number:";

cin >> num;

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 64 / 78

Challenge: Indefinite Loops in Python & C++

Write Python code that repeatedly prompts for a non-empty string.

s = ""

while s == "":

s = input("Enter a non-empty string: ")

print("You entered: ", s)

Write C++ code that repeatedly prompts until an odd number is entered.

#include <iostream>
using namespace std;

int main()

{
int num = 0;

while (num % 2 == 0)

{
cout << "Enter an odd number:";

cin >> num;

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 64 / 78

Challenge: Indefinite Loops in Python & C++

Write Python code that repeatedly prompts for a non-empty string.

s = ""

while s == "":

s = input("Enter a non-empty string: ")

print("You entered: ", s)

Write C++ code that repeatedly prompts until an odd number is entered.

#include <iostream>
using namespace std;

int main()

{
int num = 0;

while (num % 2 == 0)

{
cout << "Enter an odd number:";

cin >> num;

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 64 / 78

Challenge: Indefinite Loops in Python & C++

Write Python code that repeatedly prompts for a non-empty string.

s = ""

while s == "":

s = input("Enter a non-empty string: ")

print("You entered: ", s)

Write C++ code that repeatedly prompts until an odd number is entered.

#include <iostream>
using namespace std;

int main()

{
int num = 0;

while (num % 2 == 0)

{
cout << "Enter an odd number:";

cin >> num;

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 64 / 78

Challenge: Indefinite Loops in Python & C++

Write Python code that repeatedly prompts for a non-empty string.

s = ""

while s == "":

s = input("Enter a non-empty string: ")

print("You entered: ", s)

Write C++ code that repeatedly prompts until an odd number is entered.

#include <iostream>
using namespace std;

int main()

{
int num = 0;

while (num % 2 == 0)

{
cout << "Enter an odd number:";

cin >> num;

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 64 / 78

Challenge: Indefinite Loops in Python & C++

Write Python code that repeatedly prompts for a non-empty string.

s = ""

while s == "":

s = input("Enter a non-empty string: ")

print("You entered: ", s)

Write C++ code that repeatedly prompts until an odd number is entered.

#include <iostream>
using namespace std;

int main()

{
int num = 0;

while (num % 2 == 0)

{
cout << "Enter an odd number:";

cin >> num;

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 64 / 78

Challenge: Indefinite Loops in Python & C++

Write Python code that repeatedly prompts for a non-empty string.

s = ""

while s == "":

s = input("Enter a non-empty string: ")

print("You entered: ", s)

Write C++ code that repeatedly prompts until an odd number is entered.

#include <iostream>
using namespace std;

int main()

{
int num = 0;

while (num % 2 == 0)

{
cout << "Enter an odd number:";

cin >> num;

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 64 / 78

Challenge: Indefinite Loops in Python & C++

Write Python code that repeatedly prompts for a non-empty string.

s = ""

while s == "":

s = input("Enter a non-empty string: ")

print("You entered: ", s)

Write C++ code that repeatedly prompts until an odd number is entered.

#include <iostream>
using namespace std;

int main()

{
int num = 0;

while (num % 2 == 0)

{
cout << "Enter an odd number:";

cin >> num;

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 64 / 78

Challenge: Indefinite Loops in Python & C++

Write Python code that repeatedly prompts for a non-empty string.

s = ""

while s == "":

s = input("Enter a non-empty string: ")

print("You entered: ", s)

Write C++ code that repeatedly prompts until an odd number is entered.

#include <iostream>
using namespace std;

int main()

{
int num = 0;

while (num % 2 == 0)

{
cout << "Enter an odd number:";

cin >> num;

}
return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 64 / 78

Challenge: Indefinite Loops in Python & C++

Write Python code that repeatedly prompts for a non-empty string.

s = ""

while s == "":

s = input("Enter a non-empty string: ")

print("You entered: ", s)

Write C++ code that repeatedly prompts until an odd number is entered.

#include <iostream>
using namespace std;

int main()

{
int num = 0;

while (num % 2 == 0)

{
cout << "Enter an odd number:";

cin >> num;

}

return 0;

}

CSci 127 (Hunter) Lecture 12 July 2021 64 / 78

Challenge: Indefinite Loops in Python & C++

Write Python code that repeatedly prompts for a non-empty string.

s = ""

while s == "":

s = input("Enter a non-empty string: ")

print("You entered: ", s)

Write C++ code that repeatedly prompts until an odd number is entered.

#include <iostream>
using namespace std;

int main()

{
int num = 0;

while (num % 2 == 0)

{
cout << "Enter an odd number:";

cin >> num;

}
return 0;

}
CSci 127 (Hunter) Lecture 12 July 2021 64 / 78

Today’s Topics

Recap: Incrementer Design Challenge

C++: Basic Format & Variables

I/O and Definite Loops in C++

Conditionals in C++

Indefinite Loops in C++

Recap: C++ & Python

More Info on the Final Exam

CSci 127 (Hunter) Lecture 12 July 2021 65 / 78

Final Overview: Format

Although the exam is online, we still suggest you prepare 1 piece of
8.5” x 11” paper.

I With notes, examples, programs: what will help you on the exam.
I Best if you design/write yours, it’s excellent way to study.

The exam format:
I Like a long quiz on Gradecope, need to scroll down a lot.
I Many questions that roughly correspond to the 10 parts on old paper

finals.
I Questions based on course topics, and are variations on the

programming assignments, lab exercises, and lecture design challenges.
I Style of questions: short answer, fill in the program (one line of code

per box), multiple choice, select all, replace value, modify program,
translate & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 12 July 2021 66 / 78

Final Overview: Format

Although the exam is online, we still suggest you prepare 1 piece of
8.5” x 11” paper.

I With notes, examples, programs: what will help you on the exam.

I Best if you design/write yours, it’s excellent way to study.

The exam format:
I Like a long quiz on Gradecope, need to scroll down a lot.
I Many questions that roughly correspond to the 10 parts on old paper

finals.
I Questions based on course topics, and are variations on the

programming assignments, lab exercises, and lecture design challenges.
I Style of questions: short answer, fill in the program (one line of code

per box), multiple choice, select all, replace value, modify program,
translate & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 12 July 2021 66 / 78

Final Overview: Format

Although the exam is online, we still suggest you prepare 1 piece of
8.5” x 11” paper.

I With notes, examples, programs: what will help you on the exam.
I Best if you design/write yours, it’s excellent way to study.

The exam format:
I Like a long quiz on Gradecope, need to scroll down a lot.
I Many questions that roughly correspond to the 10 parts on old paper

finals.
I Questions based on course topics, and are variations on the

programming assignments, lab exercises, and lecture design challenges.
I Style of questions: short answer, fill in the program (one line of code

per box), multiple choice, select all, replace value, modify program,
translate & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 12 July 2021 66 / 78

Final Overview: Format

Although the exam is online, we still suggest you prepare 1 piece of
8.5” x 11” paper.

I With notes, examples, programs: what will help you on the exam.
I Best if you design/write yours, it’s excellent way to study.

The exam format:

I Like a long quiz on Gradecope, need to scroll down a lot.
I Many questions that roughly correspond to the 10 parts on old paper

finals.
I Questions based on course topics, and are variations on the

programming assignments, lab exercises, and lecture design challenges.
I Style of questions: short answer, fill in the program (one line of code

per box), multiple choice, select all, replace value, modify program,
translate & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 12 July 2021 66 / 78

Final Overview: Format

Although the exam is online, we still suggest you prepare 1 piece of
8.5” x 11” paper.

I With notes, examples, programs: what will help you on the exam.
I Best if you design/write yours, it’s excellent way to study.

The exam format:
I Like a long quiz on Gradecope, need to scroll down a lot.

I Many questions that roughly correspond to the 10 parts on old paper
finals.

I Questions based on course topics, and are variations on the
programming assignments, lab exercises, and lecture design challenges.

I Style of questions: short answer, fill in the program (one line of code
per box), multiple choice, select all, replace value, modify program,
translate & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 12 July 2021 66 / 78

Final Overview: Format

Although the exam is online, we still suggest you prepare 1 piece of
8.5” x 11” paper.

I With notes, examples, programs: what will help you on the exam.
I Best if you design/write yours, it’s excellent way to study.

The exam format:
I Like a long quiz on Gradecope, need to scroll down a lot.
I Many questions that roughly correspond to the 10 parts on old paper

finals.

I Questions based on course topics, and are variations on the
programming assignments, lab exercises, and lecture design challenges.

I Style of questions: short answer, fill in the program (one line of code
per box), multiple choice, select all, replace value, modify program,
translate & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 12 July 2021 66 / 78

Final Overview: Format

Although the exam is online, we still suggest you prepare 1 piece of
8.5” x 11” paper.

I With notes, examples, programs: what will help you on the exam.
I Best if you design/write yours, it’s excellent way to study.

The exam format:
I Like a long quiz on Gradecope, need to scroll down a lot.
I Many questions that roughly correspond to the 10 parts on old paper

finals.
I Questions based on course topics, and are variations on the

programming assignments, lab exercises, and lecture design challenges.

I Style of questions: short answer, fill in the program (one line of code
per box), multiple choice, select all, replace value, modify program,
translate & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 12 July 2021 66 / 78

Final Overview: Format

Although the exam is online, we still suggest you prepare 1 piece of
8.5” x 11” paper.

I With notes, examples, programs: what will help you on the exam.
I Best if you design/write yours, it’s excellent way to study.

The exam format:
I Like a long quiz on Gradecope, need to scroll down a lot.
I Many questions that roughly correspond to the 10 parts on old paper

finals.
I Questions based on course topics, and are variations on the

programming assignments, lab exercises, and lecture design challenges.
I Style of questions: short answer, fill in the program (one line of code

per box), multiple choice, select all, replace value, modify program,
translate & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 12 July 2021 66 / 78

Final Overview: Format

Although the exam is online, we still suggest you prepare 1 piece of
8.5” x 11” paper.

I With notes, examples, programs: what will help you on the exam.
I Best if you design/write yours, it’s excellent way to study.

The exam format:
I Like a long quiz on Gradecope, need to scroll down a lot.
I Many questions that roughly correspond to the 10 parts on old paper

finals.
I Questions based on course topics, and are variations on the

programming assignments, lab exercises, and lecture design challenges.
I Style of questions: short answer, fill in the program (one line of code

per box), multiple choice, select all, replace value, modify program,
translate & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 12 July 2021 66 / 78

How to Prepare

Emphasis of this course is on analytic
reasoning and problem solving.

The best way to prepare to do problems
(reading & watching videos can clarify but not
replace problem solving).

Repeat, while there are past exams:

I Choose a past exam (see webpage).
I With only a note sheet, work through in

1 hour (half the time).
I Grade yourself (answers on webpage).
I Ask about those that don’t make sense.
I Rewrite answers & organize by

type/question number.
I Adjust/rewrite note sheet to include

what you wished you had.

CSci 127 (Hunter) Lecture 12 July 2021 67 / 78

How to Prepare

Emphasis of this course is on analytic
reasoning and problem solving.

The best way to prepare to do problems
(reading & watching videos can clarify but not
replace problem solving).

Repeat, while there are past exams:

I Choose a past exam (see webpage).
I With only a note sheet, work through in

1 hour (half the time).
I Grade yourself (answers on webpage).
I Ask about those that don’t make sense.
I Rewrite answers & organize by

type/question number.
I Adjust/rewrite note sheet to include

what you wished you had.

CSci 127 (Hunter) Lecture 12 July 2021 67 / 78

How to Prepare

Emphasis of this course is on analytic
reasoning and problem solving.

The best way to prepare to do problems
(reading & watching videos can clarify but not
replace problem solving).

Repeat, while there are past exams:

I Choose a past exam (see webpage).
I With only a note sheet, work through in

1 hour (half the time).
I Grade yourself (answers on webpage).
I Ask about those that don’t make sense.
I Rewrite answers & organize by

type/question number.
I Adjust/rewrite note sheet to include

what you wished you had.

CSci 127 (Hunter) Lecture 12 July 2021 67 / 78

How to Prepare

Emphasis of this course is on analytic
reasoning and problem solving.

The best way to prepare to do problems
(reading & watching videos can clarify but not
replace problem solving).

Repeat, while there are past exams:

I Choose a past exam (see webpage).

I With only a note sheet, work through in
1 hour (half the time).

I Grade yourself (answers on webpage).
I Ask about those that don’t make sense.
I Rewrite answers & organize by

type/question number.
I Adjust/rewrite note sheet to include

what you wished you had.

CSci 127 (Hunter) Lecture 12 July 2021 67 / 78

How to Prepare

Emphasis of this course is on analytic
reasoning and problem solving.

The best way to prepare to do problems
(reading & watching videos can clarify but not
replace problem solving).

Repeat, while there are past exams:

I Choose a past exam (see webpage).
I With only a note sheet, work through in

1 hour (half the time).

I Grade yourself (answers on webpage).
I Ask about those that don’t make sense.
I Rewrite answers & organize by

type/question number.
I Adjust/rewrite note sheet to include

what you wished you had.

CSci 127 (Hunter) Lecture 12 July 2021 67 / 78

How to Prepare

Emphasis of this course is on analytic
reasoning and problem solving.

The best way to prepare to do problems
(reading & watching videos can clarify but not
replace problem solving).

Repeat, while there are past exams:

I Choose a past exam (see webpage).
I With only a note sheet, work through in

1 hour (half the time).
I Grade yourself (answers on webpage).

I Ask about those that don’t make sense.
I Rewrite answers & organize by

type/question number.
I Adjust/rewrite note sheet to include

what you wished you had.

CSci 127 (Hunter) Lecture 12 July 2021 67 / 78

How to Prepare

Emphasis of this course is on analytic
reasoning and problem solving.

The best way to prepare to do problems
(reading & watching videos can clarify but not
replace problem solving).

Repeat, while there are past exams:

I Choose a past exam (see webpage).
I With only a note sheet, work through in

1 hour (half the time).
I Grade yourself (answers on webpage).
I Ask about those that don’t make sense.

I Rewrite answers & organize by
type/question number.

I Adjust/rewrite note sheet to include
what you wished you had.

CSci 127 (Hunter) Lecture 12 July 2021 67 / 78

How to Prepare

Emphasis of this course is on analytic
reasoning and problem solving.

The best way to prepare to do problems
(reading & watching videos can clarify but not
replace problem solving).

Repeat, while there are past exams:

I Choose a past exam (see webpage).
I With only a note sheet, work through in

1 hour (half the time).
I Grade yourself (answers on webpage).
I Ask about those that don’t make sense.
I Rewrite answers & organize by

type/question number.

I Adjust/rewrite note sheet to include
what you wished you had.

CSci 127 (Hunter) Lecture 12 July 2021 67 / 78

How to Prepare

Emphasis of this course is on analytic
reasoning and problem solving.

The best way to prepare to do problems
(reading & watching videos can clarify but not
replace problem solving).

Repeat, while there are past exams:

I Choose a past exam (see webpage).
I With only a note sheet, work through in

1 hour (half the time).
I Grade yourself (answers on webpage).
I Ask about those that don’t make sense.
I Rewrite answers & organize by

type/question number.
I Adjust/rewrite note sheet to include

what you wished you had.

CSci 127 (Hunter) Lecture 12 July 2021 67 / 78

Final Overview: Rules

You will get credit for you answers only if:

Your answer uses language constructs that were covered in the course.

Even if your answer is correct, it will get 0 points if the method was
not covered in this course.

Your answer is not obviously copy/pasted from a website.

Your answer is not oddly identically to that of another student or is
the answer for another version of the exam.

All acts of academic dishonesty will be reported to the Office of
Academic and Student Affairs and will result in a 0 grade on the
exam.

CSci 127 (Hunter) Lecture 12 July 2021 68 / 78

Final Overview: Rules

You will get credit for you answers only if:

Your answer uses language constructs that were covered in the course.

Even if your answer is correct, it will get 0 points if the method was
not covered in this course.

Your answer is not obviously copy/pasted from a website.

Your answer is not oddly identically to that of another student or is
the answer for another version of the exam.

All acts of academic dishonesty will be reported to the Office of
Academic and Student Affairs and will result in a 0 grade on the
exam.

CSci 127 (Hunter) Lecture 12 July 2021 68 / 78

Final Overview: Rules

You will get credit for you answers only if:

Your answer uses language constructs that were covered in the course.

Even if your answer is correct, it will get 0 points if the method was
not covered in this course.

Your answer is not obviously copy/pasted from a website.

Your answer is not oddly identically to that of another student or is
the answer for another version of the exam.

All acts of academic dishonesty will be reported to the Office of
Academic and Student Affairs and will result in a 0 grade on the
exam.

CSci 127 (Hunter) Lecture 12 July 2021 68 / 78

Final Overview: Rules

You will get credit for you answers only if:

Your answer uses language constructs that were covered in the course.

Even if your answer is correct, it will get 0 points if the method was
not covered in this course.

Your answer is not obviously copy/pasted from a website.

Your answer is not oddly identically to that of another student or is
the answer for another version of the exam.

All acts of academic dishonesty will be reported to the Office of
Academic and Student Affairs and will result in a 0 grade on the
exam.

CSci 127 (Hunter) Lecture 12 July 2021 68 / 78

Final Overview: Rules

You will get credit for you answers only if:

Your answer uses language constructs that were covered in the course.

Even if your answer is correct, it will get 0 points if the method was
not covered in this course.

Your answer is not obviously copy/pasted from a website.

Your answer is not oddly identically to that of another student or is
the answer for another version of the exam.

All acts of academic dishonesty will be reported to the Office of
Academic and Student Affairs and will result in a 0 grade on the
exam.

CSci 127 (Hunter) Lecture 12 July 2021 68 / 78

Final Overview: Rules

You will get credit for you answers only if:

Your answer uses language constructs that were covered in the course.

Even if your answer is correct, it will get 0 points if the method was
not covered in this course.

Your answer is not obviously copy/pasted from a website.

Your answer is not oddly identically to that of another student or is
the answer for another version of the exam.

All acts of academic dishonesty will be reported to the Office of
Academic and Student Affairs and will result in a 0 grade on the
exam.

CSci 127 (Hunter) Lecture 12 July 2021 68 / 78

Final Exam Practice Rounds:
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a weight in kilograms and returns
the weight in pounds.

def kg2lbs(kg):

...

return(lbs)

CSci 127 (Hunter) Lecture 12 July 2021 69 / 78

Final Exam Practice Rounds:
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a weight in kilograms and returns
the weight in pounds.

def kg2lbs(kg):

...

return(lbs)

CSci 127 (Hunter) Lecture 12 July 2021 69 / 78

Final Exam Practice Rounds:
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a weight in kilograms and returns
the weight in pounds.

def kg2lbs(kg)

lbs = kg * 2.2

return(lbs)

CSci 127 (Hunter) Lecture 12 July 2021 70 / 78

Final Exam Practice Rounds:
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a string and returns its length.

def sLength(str):

...

return(length)

CSci 127 (Hunter) Lecture 12 July 2021 71 / 78

Final Exam Practice Rounds:
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a string and returns its length.

def sLength(str):

...

return(length)

CSci 127 (Hunter) Lecture 12 July 2021 71 / 78

Final Exam Practice Rounds:
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a string and returns its length.

def sLength(str):

length = len(str)

return(length)

CSci 127 (Hunter) Lecture 12 July 2021 72 / 78

Final Exam Practice Rounds:
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that, given a DataFrame, returns the minimal
value in the “Manhattan” column.

def getMin(df):

...

return(min)

CSci 127 (Hunter) Lecture 12 July 2021 73 / 78

Final Exam Practice Rounds:
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that, given a DataFrame, returns the minimal
value in the “Manhattan” column.

def getMin(df):

...

return(min)

CSci 127 (Hunter) Lecture 12 July 2021 73 / 78

Final Exam Practice Rounds:
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that, given a DataFrame, returns the minimal
value in the “Manhattan” column.

def getMin(df):

min = df[’Manhattan’].min()

return(min)

CSci 127 (Hunter) Lecture 12 July 2021 74 / 78

Final Exam Practice Rounds:
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a whole number and returns the
corresponding binary number as a string.

def num2bin(num):

...

return(bin)

CSci 127 (Hunter) Lecture 12 July 2021 75 / 78

Final Exam Practice Rounds:
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a whole number and returns the
corresponding binary number as a string.

def num2bin(num):

...

return(bin)

CSci 127 (Hunter) Lecture 12 July 2021 75 / 78

Final Exam Practice Rounds:
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a whole number and returns the
corresponding binary number as a string.

def num2bin(num):

binStr = ""

while (num > 0):

#Divide by 2, and add the remainder to the string

r = num %2

binString = str(r) + binStr

num = num / 2

return(binStr)

CSci 127 (Hunter) Lecture 12 July 2021 76 / 78

Final Exam Practice Rounds:
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that computes the total monthly payment
when given the initial loan amount, annual interest rate,
number of years of the loan.

def computePayment(loan,rate,year):

....

return(payment)

CSci 127 (Hunter) Lecture 12 July 2021 77 / 78

Final Exam Practice Rounds:
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that computes the total monthly payment
when given the initial loan amount, annual interest rate,
number of years of the loan.

def computePayment(loan,rate,year):

....

return(payment)

CSci 127 (Hunter) Lecture 12 July 2021 77 / 78

Final Exam Practice Rounds:
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that computes the total monthly payment
when given the initial loan amount, annual interest rate,
number of years of the loan.

def computePayment(loan,rate,year):

(Some formula for payment)

return(payment)

CSci 127 (Hunter) Lecture 12 July 2021 78 / 78

