
CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

CSci 127 (Hunter) Lecture 9 Summer 2020 1 / 36



Today’s Topics

Recap: Functions & Top Down Design

Mapping GIS Data

Random Numbers

Indefinite Loops

CSci 127 (Hunter) Lecture 9 Summer 2020 2 / 36



Today’s Topics

Recap: Functions & Top Down Design

Mapping GIS Data

Random Numbers

Indefinite Loops

CSci 127 (Hunter) Lecture 9 Summer 2020 3 / 36



Challenge Problem:

What are the formal parameters for the functions?

What is the output of:

r = prob4(4,"city")

print("Return: ", r)

What is the output of:

r = prob4(2,"university")

print("Return: ", r)

CSci 127 (Hunter) Lecture 9 Summer 2020 4 / 36



Challenge Problem:

What are the formal parameters for the functions?

CSci 127 (Hunter) Lecture 9 Summer 2020 5 / 36



Challenge Problem:

What are the formal parameters for the functions?

CSci 127 (Hunter) Lecture 9 Summer 2020 6 / 36



Challenge Problem:

What is the output of:

r = prob4(4,"city")

print("Return: ", r)

What is the output of:

r = prob4(2,"university")

print("Return: ", r)

CSci 127 (Hunter) Lecture 9 Summer 2020 7 / 36



Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 9 Summer 2020 8 / 36



From Last Time: koalas

http://koalastothemax.com

CSci 127 (Hunter) Lecture 9 Summer 2020 9 / 36



From Last Time: koalas

http://koalastothemax.com

CSci 127 (Hunter) Lecture 9 Summer 2020 9 / 36



From Last Time: koalas

http://koalastothemax.com

CSci 127 (Hunter) Lecture 9 Summer 2020 9 / 36



From Last Time: koalas

http://koalastothemax.com

CSci 127 (Hunter) Lecture 9 Summer 2020 9 / 36



From Last Time: koalas

http://koalastothemax.com

CSci 127 (Hunter) Lecture 9 Summer 2020 9 / 36



From Last Time: koalas

http://koalastothemax.com

CSci 127 (Hunter) Lecture 9 Summer 2020 9 / 36



From Last Time: koalas

http://koalastothemax.com

CSci 127 (Hunter) Lecture 9 Summer 2020 9 / 36



From Last Time: koalas

Process:

Get template → Fill in missing → Test locally → Submit to
from github → functions → idle3/python3 → Gradescope

CSci 127 (Hunter) Lecture 9 Summer 2020 10 / 36



From Last Time: koalas

The main() is written for you.

Only fill in two functions: average() and setRegion().

CSci 127 (Hunter) Lecture 9 Summer 2020 11 / 36



From Last Time: koalas

The main() is written for you.

Only fill in two functions: average() and setRegion().

CSci 127 (Hunter) Lecture 9 Summer 2020 11 / 36



From Last Time: koalas

The main() is written for you.

Only fill in two functions: average() and setRegion().

CSci 127 (Hunter) Lecture 9 Summer 2020 11 / 36



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 9 Summer 2020 12 / 36



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 9 Summer 2020 12 / 36



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 9 Summer 2020 12 / 36



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 9 Summer 2020 12 / 36



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 9 Summer 2020 12 / 36



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 9 Summer 2020 12 / 36



Challenge Problem:

Write the missing functions for the program:

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 Summer 2020 13 / 36



Challenge Problem:

Write the missing functions for the program:

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 Summer 2020 14 / 36



Fill in Missing Pieces

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 Summer 2020 15 / 36



Fill in Missing Pieces

1 Write import statements.

import turtle

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 Summer 2020 16 / 36



Third Part: Fill in Missing Pieces

1 Write import statements.

2 Write down new function names and inputs.

import turtle

def setUp():

#FILL IN

def getInput():

#FILL IN

def markLocation(t,x,y):

#FILL IN

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 Summer 2020 17 / 36



Third Part: Fill in Missing Pieces
1 Write import statements.

2 Write down new function names and inputs.

3 Fill in return values.

import turtle

def setUp():

#FILL IN

return(newTurtle)

def getInput():

#FILL IN

return(x,y)

def markLocation(t,x,y):

#FILL IN

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 Summer 2020 18 / 36



Third Part: Fill in Missing Pieces
1 Write import statements.

2 Write down new function names and inputs.

3 Fill in return values.

4 Fill in body of functions.

import turtle

def setUp():

newTurtle = turtle.Turtle()
newTurtle.penup()
return(newTurtle)

def getInput():

x = int(input(’Enter x: ’))
y = int(input(’Enter y: ’))
return(x,y)

def markLocation(t,x,y):

t.goto(x,y)
t.stamp()

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.CSci 127 (Hunter) Lecture 9 Summer 2020 19 / 36



Challenge Problem:

Write a function that takes a number as an input and prints its
corresponding name.

For example,

I num2string(0) returns: zero
I num2string(1) returns: one
I num2string(2) returns: two

You may assume that only single digits, 0,1,...,9, are given as input.

CSci 127 (Hunter) Lecture 9 Summer 2020 20 / 36



Challenge Problem:

Write a function that takes a number as an input and prints its
corresponding name.

For example,

I num2string(0) returns: zero
I num2string(1) returns: one
I num2string(2) returns: two

You may assume that only single digits, 0,1,...,9, are given as input.

CSci 127 (Hunter) Lecture 9 Summer 2020 20 / 36



Challenge Problem:

Write a function that takes a number as an input and prints its
corresponding name.

For example,

I num2string(0) returns: zero

I num2string(1) returns: one
I num2string(2) returns: two

You may assume that only single digits, 0,1,...,9, are given as input.

CSci 127 (Hunter) Lecture 9 Summer 2020 20 / 36



Challenge Problem:

Write a function that takes a number as an input and prints its
corresponding name.

For example,

I num2string(0) returns: zero
I num2string(1) returns: one

I num2string(2) returns: two

You may assume that only single digits, 0,1,...,9, are given as input.

CSci 127 (Hunter) Lecture 9 Summer 2020 20 / 36



Challenge Problem:

Write a function that takes a number as an input and prints its
corresponding name.

For example,

I num2string(0) returns: zero
I num2string(1) returns: one
I num2string(2) returns: two

You may assume that only single digits, 0,1,...,9, are given as input.

CSci 127 (Hunter) Lecture 9 Summer 2020 20 / 36



Challenge Problem:

Write a function that takes a number as an input and prints its
corresponding name.

For example,

I num2string(0) returns: zero
I num2string(1) returns: one
I num2string(2) returns: two

You may assume that only single digits, 0,1,...,9, are given as input.

CSci 127 (Hunter) Lecture 9 Summer 2020 20 / 36



Python Tutor

(On github)

CSci 127 (Hunter) Lecture 9 Summer 2020 21 / 36



Today’s Topics

Recap: Functions & Top Down Design

Mapping GIS Data

Random Numbers

Indefinite Loops

CSci 127 (Hunter) Lecture 9 Summer 2020 22 / 36



Folium

CSci 127 (Hunter) Lecture 9 Summer 2020 23 / 36



Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 9 Summer 2020 24 / 36



Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 9 Summer 2020 24 / 36



Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 9 Summer 2020 24 / 36



Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 9 Summer 2020 24 / 36



Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 9 Summer 2020 24 / 36



Demo

(Map created by Folium.)

CSci 127 (Hunter) Lecture 9 Summer 2020 25 / 36



Folium

To use:

import folium

Create a map:

myMap = folium.Map()

Make markers:

newMark = folium.Marker([lat,lon],popup=name)

Add to the map:

newMark.add to(myMap)

Many options to customize background map (“tiles”)
and markers.

CSci 127 (Hunter) Lecture 9 Summer 2020 26 / 36



Folium

To use:

import folium

Create a map:

myMap = folium.Map()

Make markers:

newMark = folium.Marker([lat,lon],popup=name)

Add to the map:

newMark.add to(myMap)

Many options to customize background map (“tiles”)
and markers.

CSci 127 (Hunter) Lecture 9 Summer 2020 26 / 36



Folium

To use:

import folium

Create a map:

myMap = folium.Map()

Make markers:

newMark = folium.Marker([lat,lon],popup=name)

Add to the map:

newMark.add to(myMap)

Many options to customize background map (“tiles”)
and markers.

CSci 127 (Hunter) Lecture 9 Summer 2020 26 / 36



Folium

To use:

import folium

Create a map:

myMap = folium.Map()

Make markers:

newMark = folium.Marker([lat,lon],popup=name)

Add to the map:

newMark.add to(myMap)

Many options to customize background map (“tiles”)
and markers.

CSci 127 (Hunter) Lecture 9 Summer 2020 26 / 36



Folium

To use:

import folium

Create a map:

myMap = folium.Map()

Make markers:

newMark = folium.Marker([lat,lon],popup=name)

Add to the map:

newMark.add to(myMap)

Many options to customize background map (“tiles”)
and markers.

CSci 127 (Hunter) Lecture 9 Summer 2020 26 / 36



Demo

(Python program using Folium.)

CSci 127 (Hunter) Lecture 9 Summer 2020 27 / 36



Design Challenge

Predict which each line of code does:

(example from Folium documentation)

CSci 127 (Hunter) Lecture 9 Summer 2020 28 / 36



Today’s Topics

Recap: Functions & Top Down Design

Mapping GIS Data

Random Numbers

Indefinite Loops

CSci 127 (Hunter) Lecture 9 Summer 2020 29 / 36



Python’s random package

Python has a built-in package for generating
pseudo-random numbers.

To use:

import random

Useful command to generate whole numbers:

random.randrange(start,stop,step)

which gives a number chosen randomly from
the specified range.

Useful command to generate real numbers:

random.random()

which gives a number chosen (uniformly) at
random from [0.0,1.0).

Very useful for simulations, games, and
testing.

CSci 127 (Hunter) Lecture 9 Summer 2020 30 / 36



Python’s random package

Python has a built-in package for generating
pseudo-random numbers.

To use:

import random

Useful command to generate whole numbers:

random.randrange(start,stop,step)

which gives a number chosen randomly from
the specified range.

Useful command to generate real numbers:

random.random()

which gives a number chosen (uniformly) at
random from [0.0,1.0).

Very useful for simulations, games, and
testing.

CSci 127 (Hunter) Lecture 9 Summer 2020 30 / 36



Python’s random package

Python has a built-in package for generating
pseudo-random numbers.

To use:

import random

Useful command to generate whole numbers:

random.randrange(start,stop,step)

which gives a number chosen randomly from
the specified range.

Useful command to generate real numbers:

random.random()

which gives a number chosen (uniformly) at
random from [0.0,1.0).

Very useful for simulations, games, and
testing.

CSci 127 (Hunter) Lecture 9 Summer 2020 30 / 36



Python’s random package

Python has a built-in package for generating
pseudo-random numbers.

To use:

import random

Useful command to generate whole numbers:

random.randrange(start,stop,step)

which gives a number chosen randomly from
the specified range.

Useful command to generate real numbers:

random.random()

which gives a number chosen (uniformly) at
random from [0.0,1.0).

Very useful for simulations, games, and
testing.

CSci 127 (Hunter) Lecture 9 Summer 2020 30 / 36



Python’s random package

Python has a built-in package for generating
pseudo-random numbers.

To use:

import random

Useful command to generate whole numbers:

random.randrange(start,stop,step)

which gives a number chosen randomly from
the specified range.

Useful command to generate real numbers:

random.random()

which gives a number chosen (uniformly) at
random from [0.0,1.0).

Very useful for simulations, games, and
testing.

CSci 127 (Hunter) Lecture 9 Summer 2020 30 / 36



Python’s random package

Python has a built-in package for generating
pseudo-random numbers.

To use:

import random

Useful command to generate whole numbers:

random.randrange(start,stop,step)

which gives a number chosen randomly from
the specified range.

Useful command to generate real numbers:

random.random()

which gives a number chosen (uniformly) at
random from [0.0,1.0).

Very useful for simulations, games, and
testing.

CSci 127 (Hunter) Lecture 9 Summer 2020 30 / 36



Trinket

(Demo turtle
random walk)

CSci 127 (Hunter) Lecture 9 Summer 2020 31 / 36



Today’s Topics

Recap: Functions & Top Down Design

Mapping GIS Data

Random Numbers

Indefinite Loops

CSci 127 (Hunter) Lecture 9 Summer 2020 32 / 36



Challenge Problem:

Predict what the code will do:

CSci 127 (Hunter) Lecture 9 Summer 2020 33 / 36



Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 9 Summer 2020 34 / 36



Indefinite Loops

Indefinite loops repeat as long as the
condition is true.

Could execute the body of the loop
zero times, 10 times, infinite number
of times.

The condition determines how many
times.

Very useful for checking input,
simulations, and games.

More details next lecture...

CSci 127 (Hunter) Lecture 9 Summer 2020 35 / 36



Indefinite Loops

Indefinite loops repeat as long as the
condition is true.

Could execute the body of the loop
zero times, 10 times, infinite number
of times.

The condition determines how many
times.

Very useful for checking input,
simulations, and games.

More details next lecture...

CSci 127 (Hunter) Lecture 9 Summer 2020 35 / 36



Indefinite Loops

Indefinite loops repeat as long as the
condition is true.

Could execute the body of the loop
zero times, 10 times, infinite number
of times.

The condition determines how many
times.

Very useful for checking input,
simulations, and games.

More details next lecture...

CSci 127 (Hunter) Lecture 9 Summer 2020 35 / 36



Indefinite Loops

Indefinite loops repeat as long as the
condition is true.

Could execute the body of the loop
zero times, 10 times, infinite number
of times.

The condition determines how many
times.

Very useful for checking input,
simulations, and games.

More details next lecture...

CSci 127 (Hunter) Lecture 9 Summer 2020 35 / 36



Indefinite Loops

Indefinite loops repeat as long as the
condition is true.

Could execute the body of the loop
zero times, 10 times, infinite number
of times.

The condition determines how many
times.

Very useful for checking input,
simulations, and games.

More details next lecture...

CSci 127 (Hunter) Lecture 9 Summer 2020 35 / 36



Recap

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

Introduced while loops for repeating commands
for an indefinite number of times.

Log in to Gradescope for Quiz 9

CSci 127 (Hunter) Lecture 9 Summer 2020 36 / 36



Recap

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

Introduced while loops for repeating commands
for an indefinite number of times.

Log in to Gradescope for Quiz 9

CSci 127 (Hunter) Lecture 9 Summer 2020 36 / 36



Recap

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

Introduced while loops for repeating commands
for an indefinite number of times.

Log in to Gradescope for Quiz 9

CSci 127 (Hunter) Lecture 9 Summer 2020 36 / 36



Recap

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

Introduced while loops for repeating commands
for an indefinite number of times.

Log in to Gradescope for Quiz 9

CSci 127 (Hunter) Lecture 9 Summer 2020 36 / 36



Recap

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

Introduced while loops for repeating commands
for an indefinite number of times.

Log in to Gradescope for Quiz 9

CSci 127 (Hunter) Lecture 9 Summer 2020 36 / 36



Recap

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

Introduced while loops for repeating commands
for an indefinite number of times.

Log in to Gradescope for Quiz 9

CSci 127 (Hunter) Lecture 9 Summer 2020 36 / 36


