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Today’s Topics

Recap: Functions & Top Down Design

Mapping GIS Data

Random Numbers

Indefinite Loops
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Challenge Problem:

What are the formal parameters for the functions?

What is the output of:

r = prob4(4,"city")

print("Return: ", r)

What is the output of:

r = prob4(2,"university")

print("Return: ", r)
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Python Tutor

(Demo with pythonTutor)
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From Last Time: koalas

http://koalastothemax.com
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From Last Time: koalas

Process:

Get template → Fill in missing → Test locally → Submit to
from github → functions → idle3/python3 → Gradescope
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From Last Time: koalas

The main() is written for you.

Only fill in two functions: average() and setRegion().
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Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.
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Challenge Problem:

Write the missing functions for the program:

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.
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Fill in Missing Pieces

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 Summer 2020 15 / 36



Fill in Missing Pieces

1 Write import statements.

import turtle

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.
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Third Part: Fill in Missing Pieces

1 Write import statements.

2 Write down new function names and inputs.

import turtle

def setUp():

#FILL IN

def getInput():

#FILL IN

def markLocation(t,x,y):

#FILL IN

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.
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Third Part: Fill in Missing Pieces
1 Write import statements.

2 Write down new function names and inputs.

3 Fill in return values.

4 Fill in body of functions.

import turtle

def setUp():

newTurtle = turtle.Turtle()
newTurtle.penup()
return(newTurtle)

def getInput():

x = int(input(’Enter x: ’))
y = int(input(’Enter y: ’))
return(x,y)

def markLocation(t,x,y):

t.goto(x,y)
t.stamp()

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.CSci 127 (Hunter) Lecture 9 Summer 2020 19 / 36



Challenge Problem:

Write a function that takes a number as an input and prints its
corresponding name.

For example,

I num2string(0) returns: zero
I num2string(1) returns: one
I num2string(2) returns: two

You may assume that only single digits, 0,1,...,9, are given as input.
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Python Tutor

(On github)
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Today’s Topics

Recap: Functions & Top Down Design

Mapping GIS Data

Random Numbers

Indefinite Loops
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Folium
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Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.
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Demo

(Map created by Folium.)
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Folium

To use:

import folium

Create a map:

myMap = folium.Map()

Make markers:

newMark = folium.Marker([lat,lon],popup=name)

Add to the map:

newMark.add to(myMap)

Many options to customize background map (“tiles”)
and markers.
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Demo

(Python program using Folium.)
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Design Challenge

Predict which each line of code does:

(example from Folium documentation)
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Today’s Topics

Recap: Functions & Top Down Design

Mapping GIS Data

Random Numbers

Indefinite Loops
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Python’s random package

Python has a built-in package for generating
pseudo-random numbers.

To use:

import random

Useful command to generate whole numbers:

random.randrange(start,stop,step)

which gives a number chosen randomly from
the specified range.

Useful command to generate real numbers:

random.random()

which gives a number chosen (uniformly) at
random from [0.0,1.0).

Very useful for simulations, games, and
testing.
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Trinket

(Demo turtle
random walk)
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Today’s Topics
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Random Numbers
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Challenge Problem:

Predict what the code will do:
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Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 9 Summer 2020 34 / 36



Indefinite Loops

Indefinite loops repeat as long as the
condition is true.

Could execute the body of the loop
zero times, 10 times, infinite number
of times.

The condition determines how many
times.

Very useful for checking input,
simulations, and games.

More details next lecture...
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Recap

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

Introduced while loops for repeating commands
for an indefinite number of times.

Log in to Gradescope for Quiz 9
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