
CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

CSci 127 (Hunter) Lecture 8 Summer 2020 1 / 31



Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Github

Design Challenge:

CSci 127 (Hunter) Lecture 8 Summer 2020 2 / 31



Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Github

Design Challenge:

CSci 127 (Hunter) Lecture 8 Summer 2020 3 / 31



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 Summer 2020 4 / 31



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 Summer 2020 4 / 31



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 Summer 2020 4 / 31



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 Summer 2020 4 / 31



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 Summer 2020 4 / 31



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parenthesis, both
in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters.

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 Summer 2020 5 / 31



Challenge:

What are the formal parameters? What is returned?

CSci 127 (Hunter) Lecture 8 Summer 2020 6 / 31



Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 8 Summer 2020 7 / 31



Input Parameters

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 8 Summer 2020 8 / 31



Input Parameters

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 8 Summer 2020 8 / 31



Input Parameters

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 8 Summer 2020 8 / 31



Input Parameters

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 8 Summer 2020 8 / 31



Input Parameters

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 8 Summer 2020 8 / 31



Input Parameters: What about Lists?

When called, the actual parameter values
are copied to the formal parameters.

What is copied with a list?

The address of the list, but not the
individual elements.

The actual parameters do not change, but
the inside elements might.

Easier to see with a demo.

CSci 127 (Hunter) Lecture 8 Summer 2020 9 / 31



Input Parameters: What about Lists?

When called, the actual parameter values
are copied to the formal parameters.

What is copied with a list?

The address of the list, but not the
individual elements.

The actual parameters do not change, but
the inside elements might.

Easier to see with a demo.

CSci 127 (Hunter) Lecture 8 Summer 2020 9 / 31



Input Parameters: What about Lists?

When called, the actual parameter values
are copied to the formal parameters.

What is copied with a list?

The address of the list, but not the
individual elements.

The actual parameters do not change, but
the inside elements might.

Easier to see with a demo.

CSci 127 (Hunter) Lecture 8 Summer 2020 9 / 31



Input Parameters: What about Lists?

When called, the actual parameter values
are copied to the formal parameters.

What is copied with a list?

The address of the list, but not the
individual elements.

The actual parameters do not change, but
the inside elements might.

Easier to see with a demo.

CSci 127 (Hunter) Lecture 8 Summer 2020 9 / 31



Input Parameters: What about Lists?

When called, the actual parameter values
are copied to the formal parameters.

What is copied with a list?

The address of the list, but not the
individual elements.

The actual parameters do not change, but
the inside elements might.

Easier to see with a demo.

CSci 127 (Hunter) Lecture 8 Summer 2020 9 / 31



Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 8 Summer 2020 10 / 31



Challenge:

What are the formal parameters for the functions?

What is the output of:

r = foo([1,2,3,4])

print("Return: ", r)

What is the output of:

r = foo([1024,512,256,128])

print("Return: ", r)

CSci 127 (Hunter) Lecture 8 Summer 2020 11 / 31



Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 8 Summer 2020 12 / 31



Challenge:

Predict what the code will do:

CSci 127 (Hunter) Lecture 8 Summer 2020 13 / 31



IDLE

(Demo with IDLE)

CSci 127 (Hunter) Lecture 8 Summer 2020 14 / 31



Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Github

Design Challenge:

CSci 127 (Hunter) Lecture 8 Summer 2020 15 / 31



OpenData Design Question

Design an algorithm that finds the closest collision.
(Sample NYC OpenData collision data file on back of lecture slip.)

CSci 127 (Hunter) Lecture 8 Summer 2020 16 / 31



OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Print the location with the smallest distance.

Let’s use function names as placeholders for the ones we’re unsure...

CSci 127 (Hunter) Lecture 8 Summer 2020 17 / 31



OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Print the location with the smallest distance.

Let’s use function names as placeholders for the ones we’re unsure...

CSci 127 (Hunter) Lecture 8 Summer 2020 17 / 31



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 Summer 2020 18 / 31



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 Summer 2020 18 / 31



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 Summer 2020 18 / 31



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 Summer 2020 18 / 31



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 Summer 2020 18 / 31



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 Summer 2020 18 / 31



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 Summer 2020 18 / 31



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 Summer 2020 18 / 31



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 Summer 2020 18 / 31



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 Summer 2020 18 / 31



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 Summer 2020 19 / 31



Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Github

Design Challenge:

CSci 127 (Hunter) Lecture 8 Summer 2020 20 / 31



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 Summer 2020 21 / 31



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 Summer 2020 21 / 31



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 Summer 2020 21 / 31



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 Summer 2020 21 / 31



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 Summer 2020 21 / 31



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 Summer 2020 21 / 31



Challenge:

http://koalastothemax.com

Top-down design puzzle:

I What does koalastomax do?
I What does each circle represent?

Write a high-level design for it.

Translate into code with function calls.

CSci 127 (Hunter) Lecture 8 Summer 2020 22 / 31



Demo

CSci 127 (Hunter) Lecture 8 Summer 2020 23 / 31



Demo

CSci 127 (Hunter) Lecture 8 Summer 2020 23 / 31



Demo

CSci 127 (Hunter) Lecture 8 Summer 2020 23 / 31



Demo

CSci 127 (Hunter) Lecture 8 Summer 2020 24 / 31



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 Summer 2020 25 / 31



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 Summer 2020 25 / 31



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:

I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 Summer 2020 25 / 31



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,

I Divide the region into 4 quarters.
I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 Summer 2020 25 / 31



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.

I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 Summer 2020 25 / 31



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each quarter.

I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 Summer 2020 25 / 31



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 Summer 2020 25 / 31



Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 Summer 2020 26 / 31



Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 Summer 2020 26 / 31



Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 Summer 2020 26 / 31



Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 Summer 2020 26 / 31



Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 Summer 2020 26 / 31



Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 Summer 2020 26 / 31



Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 Summer 2020 26 / 31



Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 Summer 2020 26 / 31



Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 Summer 2020 26 / 31



Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 Summer 2020 26 / 31



Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Github

Design Challenge:

CSci 127 (Hunter) Lecture 8 Summer 2020 27 / 31



Github

Octocat

Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified under the same licencse.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.

Also convenient place to host websites
(i.e. huntercsci127.github.io).

In Lab6 you set up github accounts to
copy (‘clone’) documents from the class
repo. (More in future courses.)

CSci 127 (Hunter) Lecture 8 Summer 2020 28 / 31



Github

Octocat

Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified under the same licencse.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.

Also convenient place to host websites
(i.e. huntercsci127.github.io).

In Lab6 you set up github accounts to
copy (‘clone’) documents from the class
repo. (More in future courses.)

CSci 127 (Hunter) Lecture 8 Summer 2020 28 / 31



Github

Octocat

Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified under the same licencse.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.

Also convenient place to host websites
(i.e. huntercsci127.github.io).

In Lab6 you set up github accounts to
copy (‘clone’) documents from the class
repo. (More in future courses.)

CSci 127 (Hunter) Lecture 8 Summer 2020 28 / 31



Github

Octocat

Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified under the same licencse.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.

Also convenient place to host websites
(i.e. huntercsci127.github.io).

In Lab6 you set up github accounts to
copy (‘clone’) documents from the class
repo. (More in future courses.)

CSci 127 (Hunter) Lecture 8 Summer 2020 28 / 31



Github

Octocat

Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified under the same licencse.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.

Also convenient place to host websites
(i.e. huntercsci127.github.io).

In Lab6 you set up github accounts to
copy (‘clone’) documents from the class
repo. (More in future courses.)

CSci 127 (Hunter) Lecture 8 Summer 2020 28 / 31



Github

Octocat

Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified under the same licencse.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.

Also convenient place to host websites
(i.e. huntercsci127.github.io).

In Lab6 you set up github accounts to
copy (‘clone’) documents from the class
repo. (More in future courses.)

CSci 127 (Hunter) Lecture 8 Summer 2020 28 / 31



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Find all current city job postings for internship positions.

CSci 127 (Hunter) Lecture 8 Summer 2020 29 / 31



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:
1 Open the file.
2 Select the rows that have “intern” in the business title.
3 Print out those rows.

CSci 127 (Hunter) Lecture 8 Summer 2020 30 / 31



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:
1 Open the file.
2 Select the rows that have “intern” in the business title.
3 Print out those rows.

CSci 127 (Hunter) Lecture 8 Summer 2020 30 / 31



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:

1 Open the file.
2 Select the rows that have “intern” in the business title.
3 Print out those rows.

CSci 127 (Hunter) Lecture 8 Summer 2020 30 / 31



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:
1 Open the file.

2 Select the rows that have “intern” in the business title.
3 Print out those rows.

CSci 127 (Hunter) Lecture 8 Summer 2020 30 / 31



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:
1 Open the file.
2 Select the rows that have “intern” in the business title.

3 Print out those rows.

CSci 127 (Hunter) Lecture 8 Summer 2020 30 / 31



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:
1 Open the file.
2 Select the rows that have “intern” in the business title.
3 Print out those rows.

CSci 127 (Hunter) Lecture 8 Summer 2020 30 / 31



Recap

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

Log in to Gradescope to take Quiz 8

CSci 127 (Hunter) Lecture 8 Summer 2020 31 / 31



Recap

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

Log in to Gradescope to take Quiz 8

CSci 127 (Hunter) Lecture 8 Summer 2020 31 / 31



Recap

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

Log in to Gradescope to take Quiz 8

CSci 127 (Hunter) Lecture 8 Summer 2020 31 / 31



Recap

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

Log in to Gradescope to take Quiz 8

CSci 127 (Hunter) Lecture 8 Summer 2020 31 / 31



Recap

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

Log in to Gradescope to take Quiz 8

CSci 127 (Hunter) Lecture 8 Summer 2020 31 / 31



Recap

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

Log in to Gradescope to take Quiz 8

CSci 127 (Hunter) Lecture 8 Summer 2020 31 / 31



Recap

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

Log in to Gradescope to take Quiz 8

CSci 127 (Hunter) Lecture 8 Summer 2020 31 / 31


