CSci 127: Introduction to Computer Science

CSci 127 (Hunter)

hunter.cuny.edu/csci
o
Lecture 8

DA
Summer 2020 1/31

Today's Topics

o More on Functions

©

Recap: Open Data

(%]

Top Down Design
Github

©

©

Design Challenge:

z 9ace

CSci 127 (Hunter) Lecture 8 Summer 2020 2/31

Today's Topics

CSci 127 (Hunter)

©

©

(%]

©

©

More on Functions
Recap: Open Data
Top Down Design
Github

Design Challenge:

Lecture 8

Input Parameters & Return Values

o Functions can have input
parameters.

def totalWithTax(food,tip):
total = @
tax = 0.0875
total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: "))
1Tip = float(input('Enter lunch tip:'))
1Total = totalWithTax(lunch, 1Tip)
print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip:'))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

CSci 127 (Hunter) Lecture 8 Summer 2020 4 /31

Input Parameters & Return Values

o Functions can have input

parameters.
def totalWithTax(food, tip): o Surrounded by parentheses,
total = @ - . e
ton . 2.0875 both in the function definition,
1 = food + food * . .
ol = el e s and in the function call
return(total)

(invocation).
lunch = float(input('Enter lunch total: "))

1Tip = float(input('Enter lunch tip:'))

1Total = totalWithTax(lunch, 1Tip)

print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip:'))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

CSci 127 (Hunter) Lecture 8 Summer 2020 4 /31

Input Parameters & Return Values

o Functions can have input

parameters.
def totalWithTax(food, tip): o Surrounded by parentheses,
total = @ - . e
ton . 2.0875 both in the function definition,
1 = food + food * . .
ol = el e s and in the function call
return(total)

(invocation).
lunch = float(input('Enter lunch total: "))

1Tip = float(input('Enter lunch tip:')) " "

1Total = totalWithTax(lunch, 1Tip) © The placeh0|ders n the
print('Lunch total is’, 1Total) function definition: formal
dinner= float(input('Enter dinner total: ')) parameters

dTip = float(input('Enter dinner tip:'))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

CSci 127 (Hunter) Lecture 8 Summer 2020 4 /31

Input Parameters & Return Values

def totalWithTax(food,tip):
total = @
tax = 0.0875
total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: "))
1Tip = float(input('Enter lunch tip:'))
1Total = totalWithTax(lunch, 1Tip)
print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip:'))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

CSci 127 (Hunter)

Lecture 8

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Summer 2020 4 /31

Input Parameters & Return Values

def totalWithTax(food,tip):
total = @
tax = 0.0875
total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: "))
1Tip = float(input('Enter lunch tip:'))
1Total = totalWithTax(lunch, 1Tip)
print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip:'))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

CSci 127 (Hunter)

Lecture 8

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

Summer 2020 4 /31

def totalW"LthTa

total = @
tax — 0.0875 Formal Parameters

total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: "))
1Tip = float(input('Entg ach tip:'))
1Total = totalWithTax p
print('Lunch total is', otd
Actual Parameters
dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter.digper tip:'))
dTotal = totalWithTax
print('Dinner total is', @

CSci 127 (Hunter)

Lecture 8

Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parenthesis, both

in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters.

Functions can also return
values to where it was called.

Summer 2020

5/31

Challenge:

o What are the formal parameters? What is returned?

def enigmal(x,y,z):
if x == len(y):
return(z)
elif x < len(y):
return(y[0:x])

def contl(st):
—
for i in range(len(st)-1,-1,-1):

r =1 + st[i]

return(r)
else:
s = contl(z)
return(s+y)
(a) enigmal(7,"caramel", "dulce de leche") ‘ ‘
Return:
b) enigmal(3,"cupcake","vanilla") ‘ ‘
(b) & P Return:
¢) enigmal(10,"pie","nomel") ‘ ‘
(c) & P Return:

=] = = = DAQ
Summer 2020 6 /31

CSci 127 (Hunter) Lecture 8

Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 8 Summer 2020 7/31

Input Parameters

o When called, the actual
parameter values are copied to
def totalWithTaTaod, EipTD the formal parameters.

tgial ;.3875 Formal Parameters
total = food + food * tax

total = total + tip

return(total)

lunch = float(input('Enter lunch total: '))
1Tip = float(input('Entg ach _tip:')
1Total = totalWithTa @
print('Lunch total is', ota
Actual Parameters
dinner= float(input('Enter dmner‘ total D))
dTip = float(input('Entep.d ip:"))
dTotal = totalWithTax
print('Dinner total is',

CSci 127 (Hunter) Lecture 8 Summer 2020 8 /31

Input Parameters

o When called, the actual
parameter values are copied to

def totalNi thTax(Faod, Ep)} the formal parameters.
totalwi thTaTood, T2 P
tax - 0.0875 Formal Parameters A” th d . d th
total = food + food * tax o € commandas insiae €
total = total + tip H
retarnCtotal) function are performed on the
lunch = float(input('Enter lunch total: ')) C0p|e5-
1Tip = float(input('Entg ach _tip:')

1Total = totalWithTaxllunch, 1Tip)
print('Lunch total is', ota
Actual Parameters
dinner= float(input('Enter dmner‘ total: "))
dTip = float(input('Enter.din tip:"))

dTotal = totalWithTax
print('Dinner total is', @

CSci 127 (Hunter) Lecture 8 Summer 2020 8 /31

Input Parameters

o When called, the actual
parameter values are copied to

def totalWithTaTaod, EipTD the formal parameters.
:gial ; 3875 Formal Parameters P ..
OO i e o All the commands inside the
total = total + tip H
e aCtorey function are performed on the
lunch = float(input('Enter lunch total: ')) C0p|e5-
1Tip = float(input('Entg ach _tip:')
1Total = totalWithTax p o The actual parameters do not

print('Lunch total is', ota
Actual Parameters Cha nge

dinner= float(input('Enter dmner total: ")) '

dTip = float(input('Enter.din tip:"))

dTotal = totalWithTax

print('Dinner total is', @

] = = E PANE
CSci 127 (Hunter) Lecture 8 Summer 2020 8 /31

Input Parameters

o When called, the actual
parameter values are copied to
def totalWithTaxCTood, EipT: the formal parameters.
B I P
tax - 0.0875 Formal Parameters A” th d . d th
total = food + food * tax ° € commands Inside €
total = total + tip H
ety function are performed on the
lunch = float(input('Enter lunch total: ')) C0p|e5-
1Tip = float(input('Entg ach _tip:')
1Total = totalWithTax p o The actual parameters do not

print('Lunch total is', ota
Actual Parameters Cha nge
dinner= float(input('Enter dmner total: ")) '
dTip = float(input('Enter.din tip:"))

dTotal = totalWithTax
print('Dinner total is', @

o The copies are discarded when
the function is done.

CSci 127 (Hunter) Lecture 8 Summer 2020 8 /31

Input Parameters

def totalWithTaxCFood, tip)D

total = @
tax - 0.0875 Formal Parameters

total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: '))
1Tip = float(input('Entg b tip:')
1Total = totalWithTax p
print('Lunch total is', ota
Actual Parameters
dinner= float(input('Enter dmner total: "))
dTip = float(input('Enter.din tip:"))
dTotal = totalWithTax
print('Dinner total is', @

CSci 127 (Hunter)

©

Lecture 8

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

Summer 2020 8 /31

Input Parameters: What about Lists?

@ When called, the actual parameter values
4ot 2013 Final Bran. 5 are copied to the formal parameters.

def kuwae(inlst):
tot = 1
for item in inLst:
tot = tot * item
return tot

def foo(inlst):
if (inlst[-1] > inLst[@]):
return kuwae(inLst)
else:
return -

foo([2, 4, 6, 8])

foo([4002, 328, 457, 1])

CSci 127 (Hunter) Lecture 8 Summer 2020 9/31

Input Parameters: What about Lists?

@ When called, the actual parameter values

et 2013 it o, 3 are copied to the formal parameters.
def kuwae(inlst):

ot = 1

for tten in fnLst: o What is copied with a list?

tot = tot * item
return tot

def foo(inlst):
if (inlst[-1] > inLst[@]):
return kuwae(inLst)
else:
return -

foo([2, 4, 6, 8])

foo([4002, 328, 457, 1])

CSci 127 (Hunter) Lecture 8 Summer 2020 9/31

Input Parameters: What about Lists?

#Fall 2013 Final Exam, 5

def kuwae(inlst):
tot = 1
for item in inLst:
tot = tot * item
return tot

def foo(inlst):

if (inlst[-1] > inLst[0]):

return kuwae(inLst)
else:
return -

foo([2, 4, 6, 8])

foo([4002, 328, 457, 1])

CSci 127 (Hunter)

@ When called, the actual parameter values
are copied to the formal parameters.

@ What is copied with a list?

o The address of the list, but not the
individual elements.

Lecture 8 Summer 2020

9/31

Input Parameters: What about Lists?

@ When called, the actual parameter values
are copied to the formal parameters.

#Fall 2013 Final Exam, 5

def kuwae(inlst):
tot =1
for iten in intst: o What is copied with a list?
tot = tot * item
return tot

def foo(inlst):

o The address of the list, but not the
o owaed sty individual elements.

else:
return -1

o The actual parameters do not change, but
the inside elements might.

foo([2, 4, 6, 8])

foo([4002, 328, 457, 1])

CSci 127 (Hunter) Lecture 8 Summer 2020 9/31

Input Parameters: What about Lists?

@ When called, the actual parameter values

et 2013 it o, 3 are copied to the formal parameters.
def kuwae(inlst):

ot = 1

for tten in fnLst: o What is copied with a list?

tot = tot * item
return tot

def foo(inlst):

o The address of the list, but not the
o owaed sty individual elements.

else:
return -

o The actual parameters do not change, but
the inside elements might.

foo([2, 4, 6, 8])

foo([4002, 328, 457, 1])

o Easier to see with a demo.

CSci 127 (Hunter) Lecture 8 Summer 2020 9 /31

Python Tutor

#Fall 2013 Final Exam, 5

def kuwae(inLst):
tot =1
for item in dinlst:
tot = tot * item
return tot

def foo(inlst): (Demo with pythonTutor)

if (inlst[-1] > inLst[@]):
return kuwae(inlst)
else:
return -1

foo([2, 4, 6, 8])

foo([4002, 328, 457, 1])

CSci 127 (Hunter) Lecture 8 Summer 2020 10 / 31

Challenge:

def bar(n):
if n <= 8:
return 1
else:
return O

def foo(l):
n = bar(1[-1])
return 1[n]

o What are the formal parameters for the functions?

o What is the output of:
r = foo([1,2,3,4])
print ("Return: ", r)
o What is the output of:

r = foo([1024,512,256,128])
print ("Return: ", r)

CSci 127 (Hunter) Lecture 8 Summer 2020

11/31

Python Tutor

def bar(n):
if n <= 8:
return 1
else:
return 0 (Demo with pythonTutor)
def foo(1):
n = bar(1[-11)
return 1[n]

CSci 127 (Hunter) Lecture 8 Summer 2020 12 /31

Challenge:

Predict what the code will do:

#(CSci 127 Teaching Staff
#Triangles two ways...
import turtle

def setUp(t, dist, col):

t.penup(Q)
t.forward(dist) .
t.pendown() def mainQ):
t.color(col) i nessa = turtle.Turtle()
def nestedTriangle(t, side): | setUp(nessa, 100, "violet")
if side > 10: nestedTriangle(nessa, 160)

for i in range(3):
t.forward(side) \
t.1eft(120) frank = turtle.Turtle()

nestedTriangle(t, side/2) ! setUp(fr‘ank, -1@0, nr‘edn)
def fractalTriangle(t, side): Fr‘actalTr‘iangle(Fr‘ank, 160)

if side > 10:
for i in range(3): . " . .
t. forward(side) if __name__ == "__main__":
t.left(120) main()

fractalTriangle(t, side/2)

CSci 127 (Hunter) Lecture 8 Summer 2020

13 /31

IDLE

#CSci 127 Teaching Staff
#Triangles two ways.
import turtle

def setUp(t, dist, col):
t.penup()
t. forward(dist)
t.pendown()
t.color(col)

def nestedTriangleCt, side): .
if side > 10:
A ——. (Demo with IDLE)
t.forward(side)
t.1eft(120)

nestedTriangle(t, side/2)

def fractalTriangle(t, side):
f side > 10:

for i in range(3):
t. forward(side)
t.1eft(120)

fractalTriangleCt, side/2)

CSci 127 (Hunter)

o F
Lecture 8

Summer 2020 14 /31

Today's Topics

CSci 127 (Hunter)

©

©

(%]

©

©

More on Functions
Recap: Open Data
Top Down Design
Github

Design Challenge:

Lecture 8

OpenData Design Question

e

s
e e
- 9 A
v Q

et

v

Design an algorithm that finds the closest collision.

(Sample NYC OpenData collision data file on back of lecture sli%)
CSci 127 (Hunter)

¢

Qe

Lecture 8

DA
Summer 2020 16 / 31

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

(]

Create a “To Do" list of what your program has to accomplish.

©

Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.

©

Example:

@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.

@ Open up the CSV file.

@ Check distance to each to user's location.

® Print the location with the smallest distance.

CSci 127 (Hunter) Lecture 8 Summer 2020 17 / 31

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.
o Don't worry if you don't know how to do all the items you write down.
o Example:
@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.
@ Open up the CSV file.
@ Check distance to each to user’s location.
® Print the location with the smallest distance.
o Let’s use function names as placeholders for the ones we're unsure...

CSci 127 (Hunter) Lecture 8 Summer 2020 17 / 31

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

@ Find data set (great place to look: NYC OpenData).

CSci 127 (Hunter) Lecture 8 Summer 2020 18 / 31

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

@ Find data set (great place to look: NYC OpenData).

import pandas as pd
inF = input(’Enter CSV file name:’)

CSci 127 (Hunter) Lecture 8 Summer 2020 18 / 31

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes

the closest collision to the location the user provides.

@ Find data set (great place to look: NYC OpenData).

import pandas as pd
inF = input(’Enter CSV file name:’)

@ Ask user for current location.

CSci 127 (Hunter) Lecture 8 Summer 2020

18 /31

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes

the closest collision to the location the user provides.

@ Find data set (great place to look: NYC OpenData).
import pandas as pd
inF = input(’Enter CSV file name:’)

@ Ask user for current location.

lat = float(input(’Enter latitude:’))
lon = float(input(’Enter longitude:’))

CSci 127 (Hunter) Lecture 8 Summer 2020

18 /31

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes

the closest collision to the location the user provides.

@ Find data set (great place to look: NYC OpenData).
import pandas as pd
inF = input(’Enter CSV file name:’)

@ Ask user for current location.

lat = float(input(’Enter latitude:’))
lon = float(input(’Enter longitude:’))

@ Open up the CSV file.

CSci 127 (Hunter) Lecture 8 Summer 2020

18 /31

OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

@ Find data set (great place to look: NYC OpenData).
import pandas as pd
inF = input(’Enter CSV file name:’)

@ Ask user for current location.

lat = float(input(’Enter latitude:’))
lon = float(input(’Enter longitude:’))

@ Open up the CSV file.

collisions = pd.read_csv(inF)

CSci 127 (Hunter) Lecture 8 Summer 2020 18 / 31

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes

the closest collision to the location the user provides.

@ Find data set (great place to look: NYC OpenData).

import pandas as pd
inF = input(’Enter CSV file name:’)

@ Ask user for current location.

lat = float(input(’Enter latitude:’))
lon = float(input(’Enter longitude:’))

@ Open up the CSV file.

collisions = pd.read_csv(inF)

@ Check distance to each to user's location.

CSci 127 (Hunter) Lecture 8 Summer 2020

18 /31

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

@ Find data set (great place to look: NYC OpenData).
import pandas as pd
inF = input(’Enter CSV file name:’)

@ Ask user for current location.

lat = float(input(’Enter latitude:’))
lon = float(input(’Enter longitude:’))

@ Open up the CSV file.

collisions = pd.read_csv(inF)

@ Check distance to each to user's location.

closestLat, closestLon = findClosest(collisions, lat, lon)

CSci 127 (Hunter) Lecture 8 Summer 2020 18 / 31

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

@ Find data set (great place to look: NYC OpenData).

import pandas as pd
inF = input(’Enter CSV file name:’)

@ Ask user for current location.

lat = float(input(’Enter latitude:’))
lon = float(input(’Enter longitude:’))

@ Open up the CSV file.

collisions = pd.read_csv(inF)

@ Check distance to each to user's location.

closestLat, closestLon = findClosest(collisions, lat, lon)

® Print the location with the smallest distance.

CSci 127 (Hunter) Lecture 8 Summer 2020 18 / 31

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

@ Find data set (great place to look: NYC OpenData).
import pandas as pd
inF = input(’Enter CSV file name:’)

@ Ask user for current location.

lat = float(input(’Enter latitude:’))
lon = float(input(’Enter longitude:’))

@ Open up the CSV file.

collisions = pd.read_csv(inF)

@ Check distance to each to user's location.

closestLat, closestLon = findClosest(collisions, lat, lon)

® Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 Summer 2020 18 / 31

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

@ Find data set (great place to look: NYC OpenData).
import pandas as pd
inF = input(’Enter CSV file name:’)

@ Ask user for current location.

lat = float(input(’Enter latitude:’))
lon = float(input(’Enter longitude:’))

@ Open up the CSV file.

collisions = pd.read_csv(inF)

@ Check distance to each to user's location.

closestLat, closestLon = findClosest(collisions, lat, lon)

® Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 Summer 2020 19 /31

Today's Topics

CSci 127 (Hunter)

©

©

(%]

©

©

More on Functions
Recap: Open Data
Top Down Design
Github

Design Challenge:

Lecture 8

Summer 2020

Top-Down Design

CSci 127 (Hunter)

o The last example demonstrates

top-down design: breaking into
subproblems, and implementing each
part separately.

F = = £ DA

Lecture 8 Summer 2020 21 /31

Top-Down Design

CSci 127 (Hunter)

o The last example demonstrates

top-down design: breaking into
subproblems, and implementing each
part separately.

» Break the problem into tasks for a
“To Do" list.

F = = £ DA

Lecture 8 Summer 2020 21 /31

Top-Down Design

o The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

» Break the problem into tasks for a

“To Do" list.
» Translate list into function names &
inputs/returns.
=] = = = = a

CSci 127 (Hunter) Lecture 8 Summer 2020 21 /31

Top-Down Design

o The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

» Break the problem into tasks for a
“To Do" list.

» Translate list into function names &
inputs/returns.

» Implement the functions, one-by-one.

=] =) = = £ DA

CSci 127 (Hunter) Lecture 8 Summer 2020 21 /31

Top-Down Design

o The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

» Break the problem into tasks for a
“To Do” list.

» Translate list into function names &
inputs/returns.

» Implement the functions, one-by-one.

o Excellent approach since you can then
test each part separately before adding
it to a large program.

= =) E E 9ace
CSci 127 (Hunter) Lecture 8 Summer 2020 21 /31

Top-Down Design

o The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

» Break the problem into tasks for a
“To Do” list.

» Translate list into function names &
inputs/returns.

» Implement the functions, one-by-one.

o Excellent approach since you can then
test each part separately before adding
it to a large program.

o Very common when working with a
team: each has their own functions to
implement and maintain.

o F = = £ DA

CSci 127 (Hunter) Lecture 8 Summer 2020 21 /31

Challenge:

http://koalastothemax.com
o Top-down design puzzle:

» What does koalastomax do?

» What does each circle represent?

o Write a high-level design for it.

o Translate into code with function calls.
CSci 127 (Hunter)

Lecture 8

DA
Summer 2020 22 /31

Demo

CSci 127 (Hunter)

Lecture 8

DHa
Summer 2020

23 /31

Demo

2 ! byl

CSci 127 (Hunter)

Lecture 8

DHa
Summer 2020

23 /31

Demo

CSci 127 (Hunter)

Lecture 8

DHa
Summer 2020

23 /31

CSci 127 (Hunter)

Demo

<

im]
Amazon.com:

koalastothemax.com
Paul Ford: Wh,

Bloomberg

Google for Education

Made with love by Vadim Ogievetsky for Annie Albagl / Powered by D3

Lecture 8

Summer 2020

DA
24 /31

Design: Koalas to the Max

o Input: Image & mouse movements

CSci 127 (Hunter)

Lecture 8

DA
Summer 2020 25 /31

Design: Koalas to the Max

o Input: Image & mouse movements

o Output: Completed image

CSci 127 (Hunter)

Lecture 8

DA
Summer 2020 25 /31

Design: Koalas to the Max

o Input: Image & mouse movements

o Output: Completed image
o Design:

CSci 127 (Hunter)

Lecture 8

DA
Summer 2020 25 /31

Design: Koalas to the Max

o Input: Image & mouse movements

o Output: Completed image
o Design:

» Every mouse movement,

CSci 127 (Hunter)

Lecture 8

DA
Summer 2020 25 /31

Design: Koalas to the Max

o Input: Image & mouse movements

o Output: Completed image

o Design:

» Every mouse movement,
»>

Divide the region into 4 quarters.

CSci 127 (Hunter)

Lecture 8

DA
Summer 2020 25 /31

Design: Koalas to the Max

o Input: Image & mouse movements

o Output: Completed image
o Design:

» Every mouse movement,
> Divide the region into 4 quarters.
> Average the color of each quarter.

CSci 127 (Hunter)

Lecture 8

DA
Summer 2020 25 /31

Design: Koalas to the Max

o Input: Image & mouse movements

o Output: Completed image
o Design:

» Every mouse movement,
»>
| 4

Divide the region into 4 quarters.
Average the color of each quarter.
>

Set each quarter to its average.

CSci 127 (Hunter)

Lecture 8

DA
Summer 2020 25 /31

Averaging numpy arrays

o Average each color channel of the image:

CSci 127 (Hunter) Lecture 8 Summer 2020 26 / 31

Averaging numpy arrays

o Average each color channel of the image

CSci 127 (Hunter)

Lecture 8

A
Summer 2020

26 / 31

Averaging numpy arrays

o Average each color channel of the image:

redAve

np.average (region[:,:,0])

CSci 127 (Hunter)

Lecture 8

A
Summer 2020

26 / 31

Averaging numpy arrays

o Average each color channel of the image:

redAve

greenAve =

np.average (region[:,:,0])
= np.average(region[:,:,1])

CSci 127 (Hunter)

Lecture 8

DA
Summer 2020 26 / 31

Averaging numpy arrays

o Average each color channel of the image:

redAve
greenAve
bluelve

np.average (region[:,:,0])

np.average(region[:,:,1])
np.average (region[:,:,2])

CSci 127 (Hunter)

Lecture 8

DA
Summer 2020 26 / 31

Averaging numpy arrays

o Average each color channel of the image:

redAve
greenAve
bluelve

np.average (region[:,:,0])

np.average(region[:,:,1])
np.average (region[:,:,2])
o Set each pixel to the average value:

CSci 127 (Hunter)

Lecture 8

DA
Summer 2020 26 / 31

Averaging numpy arrays

o Average each color channel of the image:

redAve = np.average(region[:,:,0])
greenAve = np.average(region[:,:,1])
blueAve =

np.average (region[:,:,2])
o Set each pixel to the average value:

region[:,:,0] = redAve

o
CSci 127 (Hunter)

= = =
Lecture 8

DA
Summer 2020 26 / 31

Averaging numpy arrays

o Average each color channel of the image:

redAve = np.average(region[:,:,0])
greenAve = np.average(region[:,:,1])
blueAve =

np.average (region[:,:,2])
o Set each pixel to the average value:

region[:,:,0] = redAve
region[:,:,1]

greenAve

o
CSci 127 (Hunter)

= = =
Lecture 8

DA
Summer 2020 26 / 31

Averaging numpy arrays

o Average each color channel of the image:

o Set each pixel to the average value:

region[:,:,0] = redAve
regionl[:,:,1]
regionl[:,:,2]

greenAve
blueAve

o
CSci 127 (Hunter)

= = =
Lecture 8

Summer 2020

redAve = np.average(region[:,:,0])
greenAve = np.average(region[:,:,1])
blueAve =

np.average (region[:,:,2])

DA
26 / 31

Averaging numpy arrays

o Average each color channel of the image:

redAve

greenAve =
bluelve

np.average (region[:,:,0])
o Set each pixel to the average value

np.average(region[:,:,1])
np.average (region[:,:,2])
region[:,:,0]

redAve
region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter)

Lecture 8

A
Summer 2020

26 / 31

Today's Topics

CSci 127 (Hunter)

©

(%]

©

©

More on Functions
Recap: Open Data
Top Down Design
Github

Design Challenge:

Lecture 8

Github

o Used to collaborate on and share code,

documents, etc.

Octocat

CSci 127 (Hunter) Lecture 8

Summer 2020

28 / 31

Github

o Used to collaborate on and share code,
documents, etc.

o Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified under the same licencse.

Octocat

CSci 127 (Hunter) Lecture 8 Summer 2020

28 / 31

Github

o Used to collaborate on and share code,
documents, etc.

o Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified under the same licencse.

o More formally: git is a version control
protocol for tracking changes and versions
of documents.

Octocat

CSci 127 (Hunter) Lecture 8 Summer 2020 28 /31

Github

Octocat

CSci 127 (Hunter)

Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified under the same licencse.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.

Lecture 8 Summer 2020

28 / 31

Github

Octocat

CSci 127 (Hunter)

Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified under the same licencse.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.

Also convenient place to host websites
(i.e. huntercscil27.github.io).

Lecture 8 Summer 2020

28 / 31

Github

Octocat

CSci 127 (Hunter)

Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified under the same licencse.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.

Also convenient place to host websites
(i.e. huntercscil27.github.io).

In Lab6 you set up github accounts to
copy (‘clone’) documents from the class
repo. (More in future courses.)

Lecture 8 Summer 2020

28 / 31

Design Challenge

Job ID Agency Posting T# O Business Title Civil Service " Title Codi Level Job Category Full- Sal;
246814 DEPT OF INFO External 1 Senior Architect Cloud Infrastructure D SENIOR [T AF 6800 0 Information ' F
246814 DEPT OF INFQ Internal 1 Senior Architect Cloud Infrastructure Di SENIOR 1T AF 6800 0 Information ' F

247320 DEPT OF ENVI Internal = 2 MECHANICAL ENGINEERING INTERN ~ MECHANICA 20403 0 Engineering, F
247320 DEPT OF ENVI External 2 MECHANICAL ENGINEERING INTERN ~ MECHANICA 20403 0 Engineering, F
269885 DEPT OF ENVI External 1 MECHANICAL ENGINEERING INTERN ~ MECHANICA 20403 0 Engineering, F
269885 DEPT OF ENVI Internal = 1 MECHANICAL ENGINEERING INTERN MECHANICA 20403 0 Engineering, F
285120 NYC HOUSING External 1 Deputy Director for Engineering ADMINISTRA 10015 M3 Engineering, P
285120 NYC HOUSING Internal = 1 Deputy Director for Engineering ADMINISTRA 10015 M3 Engineering, P
287202 DEPT OF ENVI External 4 MECHANICAL ENGINEERING INTERN ~ MECHANICA 20403 0 Engineering, F

287202 DEPT OF ENVI Internal = 4 MECHANICAL ENGINEERING INTERN ~ MECHANICA 20403 0 Engineering, F

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Find all current city job postings for internship positions.

CSci 127 (Hunter) Lecture 8 Summer 2020 29 /31

Design Challenge

Job ID
246814
286814
247320
247320
269885
269885
285120
285120
287202
287202

o Input: CSV file from NYC OpenData.

Agency Posting T# O Business Title

DEPT OF INFQ External
DEPT OF INFC Internal
DEPT OF ENVI Internal
DEPT OF ENVI External
DEPT OF ENVI External
DEPT OF ENVI Internal
NYC HOUSING External
NYC HOUSING Internal
DEPT OF ENVI External
DEPT OF ENVI Internal

2 MECHANICAL ENGINEERING INTERN
2 MECHANICAL ENGINEERING INTERN
1 MECHANICAL ENGINEERING INTERN
1 MECHANICAL ENGINEERING INTERN
1 Deputy Director for Engineering

1 Deputy Director for Engineering

4 MECHANICAL ENGINEERING INTERN
4 MECHANICAL ENGINEERING INTERN

Civil Service "Title Codi Level Job Category Full-'Salary Range Salary Range
1 Senior Architect Cloud Infrastructure DiSENIOR IT AF
1 Senior Architect Cloud Infrastructure Di SENIOR IT AF

MECHANICA
MECHANICA
MECHANICA
MECHANICA
ADMINISTRA
ADMINISTRA
MECHANICA
MECHANICA

M3
M3

0 Informatian “F
0 Information *F
0 Engineering, F
0 Engineering, F
0 Engineering, F
0 Engincering, F

Engineering, P

Engineering, P
0 Engineering, F
0 Engincering, F

100000
52000
52000
52000
52000

115000

115000
52000
52000

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

CSci 127 (Hunter)

Lecture 8

130000
130000
52000
52000
52000
52000
130000
130000
52000
52000

Summer 2020

30 /31

Design Challenge

Job ID
246814
286814
247320
247320
269885
269885
285120
285120
287202
287202

o Input: CSV file from NYC OpenData.
o Qutput: A list of internships offered by the city.

Agency Posting T# O Business Title

DEPT OF INFQ External
DEPT OF INFC Internal
DEPT OF ENVI Internal
DEPT OF ENVI External
DEPT OF ENVI External
DEPT OF ENVI Internal
NYC HOUSING External
NYC HOUSING Internal
DEPT OF ENVI External
DEPT OF ENVI Internal

2 MECHANICAL ENGINEERING INTERN
2 MECHANICAL ENGINEERING INTERN
1 MECHANICAL ENGINEERING INTERN
1 MECHANICAL ENGINEERING INTERN
1 Deputy Director for Engineering

1 Deputy Director for Engineering

4 MECHANICAL ENGINEERING INTERN
4 MECHANICAL ENGINEERING INTERN

Civil Service "Title Codi Level Job Category Full-'Salary Range Salary Range
1 Senior Architect Cloud Infrastructure DiSENIOR IT AF
1 Senior Architect Cloud Infrastructure Di SENIOR IT AF

MECHANICA
MECHANICA
MECHANICA
MECHANICA
ADMINISTRA
ADMINISTRA
MECHANICA
MECHANICA

M3
M3

0 Informatian “F
0 Information *F
0 Engineering, F
0 Engineering, F
0 Engineering, F
0 Engincering, F

Engineering, P

Engineering, P
0 Engineering, F
0 Engincering, F

100000
52000
52000
52000
52000

115000

115000
52000
52000

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

CSci 127 (Hunter)

Lecture 8

130000
130000
52000
52000
52000
52000
130000
130000
52000
52000

Summer 2020

30 /31

Design Challenge

Job ID
246814
286814
247320
247320
269885
269885
285120
285120
287202
287202

o Input: CSV file from NYC OpenData.
o Qutput: A list of internships offered by the city.

o Process:

Agency Posting T# O Business Title

DEPT OF INFQ External
DEPT OF INFC Internal
DEPT OF ENVI Internal
DEPT OF ENVI External
DEPT OF ENVI External
DEPT OF ENVI Internal
NYC HOUSING External
NYC HOUSING Internal
DEPT OF ENVI External
DEPT OF ENVI Internal

2 MECHANICAL ENGINEERING INTERN
2 MECHANICAL ENGINEERING INTERN
1 MECHANICAL ENGINEERING INTERN
1 MECHANICAL ENGINEERING INTERN
1 Deputy Director for Engineering

1 Deputy Director for Engineering

4 MECHANICAL ENGINEERING INTERN
4 MECHANICAL ENGINEERING INTERN

Civil Service "Title Codi Level Job Category Full-'Salary Range Salary Range
1 Senior Architect Cloud Infrastructure DiSENIOR IT AF
1 Senior Architect Cloud Infrastructure Di SENIOR IT AF

MECHANICA
MECHANICA
MECHANICA
MECHANICA
ADMINISTRA
ADMINISTRA
MECHANICA
MECHANICA

M3
M3

0 Informatian “F
0 Information *F
0 Engineering, F
0 Engineering, F
0 Engineering, F
0 Engincering, F

Engineering, P

Engineering, P
0 Engineering, F
0 Engincering, F

100000
52000
52000
52000
52000

115000

115000
52000
52000

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

CSci 127 (Hunter)

Lecture 8

130000
130000
52000
52000
52000
52000
130000
130000
52000
52000

Summer 2020

30 /31

Design Challenge

Job ID
246814
286814
247320
247320
269885
269885
285120
285120
287202
287202

o Input: CSV file from NYC OpenData.
o Qutput: A list of internships offered by the city.

o Process:

Agency Posting T# O Business Title

DEPT OF INFQ External
DEPT OF INFC Internal
DEPT OF ENVI Internal
DEPT OF ENVI External
DEPT OF ENVI External
DEPT OF ENVI Internal
NYC HOUSING External
NYC HOUSING Internal
DEPT OF ENVI External
DEPT OF ENVI Internal

2 MECHANICAL ENGINEERING INTERN
2 MECHANICAL ENGINEERING INTERN
1 MECHANICAL ENGINEERING INTERN
1 MECHANICAL ENGINEERING INTERN
1 Deputy Director for Engineering

1 Deputy Director for Engineering

4 MECHANICAL ENGINEERING INTERN
4 MECHANICAL ENGINEERING INTERN

Civil Service "Title Codi Level Job Category Full-'Salary Range Salary Range
1 Senior Architect Cloud Infrastructure DiSENIOR IT AF
1 Senior Architect Cloud Infrastructure Di SENIOR IT AF

MECHANICA
MECHANICA
MECHANICA
MECHANICA
ADMINISTRA
ADMINISTRA
MECHANICA
MECHANICA

M3
M3

0 Informatian “F
0 Information *F
0 Engineering, F
0 Engineering, F
0 Engineering, F
0 Engincering, F

Engineering, P

Engineering, P
0 Engineering, F
0 Engincering, F

100000
52000
52000
52000
52000

115000

115000
52000
52000

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

@ Open the file.

CSci 127 (Hunter)

Lecture 8

130000
130000
52000
52000
52000
52000
130000
130000
52000
52000

Summer 2020

30 /31

Design Challenge

lobID Agency Posting T# O Business Title

246814 DEPT OF INFQ External
246814 DEPT OF INFC Internal
247320 DEPT OF ENVI Internal
247320 DEPT OF ENVI External
269885 DEPT OF ENVI External
269885 DEPT OF ENVI Internal
285120 NYC HOUSING External
285120 NYC HOUSING Internal
287202 DEPT OF ENVI External
287202 DEPT OF ENVI Internal

2 MECHANICAL ENGINEERING INTERN
2 MECHANICAL ENGINEERING INTERN
1 MECHANICAL ENGINEERING INTERN
1 MECHANICAL ENGINEERING INTERN
1 Deputy Director for Engineering

1 Deputy Director for Engineering

4 MECHANICAL ENGINEERING INTERN
4 MECHANICAL ENGINEERING INTERN

Civil Service "Title Codi Level Job Category Full-'Salary Range Salary Range
1 Senior Architect Cloud Infrastructure DiSENIOR IT AF
1 Senior Architect Cloud Infrastructure Di SENIOR IT AF

MECHANICA
MECHANICA
MECHANICA
MECHANICA
ADMINISTRA
ADMINISTRA
MECHANICA
MECHANICA

M3
M3

0 Informatian “F
0 Information *F
0 Engineering, F
0 Engineering, F
0 Engineering, F
0 Engincering, F

Engineering, P

Engineering, P
0 Engineering, F
0 Engincering, F

100000
52000
52000
52000
52000

115000

115000
52000
52000

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

o Input: CSV file from NYC OpenData.
o Qutput: A list of internships offered by the city.

o Process:
@ Open the file.

@ Select the rows that have “intern” in the business title.

CSci 127 (Hunter)

Lecture 8

130000
130000
52000
52000
52000
52000
130000
130000
52000
52000

Summer 2020

30 /31

Design Challenge

Job ID
246814
286814
247320
247320
269885
269885
285120
285120
287202
287202

o Input: CSV file from NYC OpenData.
o Qutput: A list of internships offered by the city.

o Process:

Agency Posting T# O Business Title

DEPT OF INFQ External
DEPT OF INFC Internal
DEPT OF ENVI Internal
DEPT OF ENVI External
DEPT OF ENVI External
DEPT OF ENVI Internal
NYC HOUSING External
NYC HOUSING Internal
DEPT OF ENVI External
DEPT OF ENVI Internal

1 senior Architect Cloud Infrastructure DiSENIOR IT A
1 Senior Architect Cloud Infrastructure D SENIOR IT AR
2 MECHANICAL ENGINEERING INTERN MECHANICA
2 MECHANICAL ENGINEERING INTERN | MECHANICA
1 MECHANICAL ENGINEERING INTERN MECHANICA
1 MECHANICAL ENGINEERING INTERN | MECHANICA
1 Deputy Director for Engineering ADMINISTRA
1 Deputy Director for Engineering ADMINISTRA
4 MECHANICAL ENGINEERING INTERN MECHANICA
4 MECHANICAL ENGINEERING INTERN MECHANICA

6800
20403
20403
20403
20403
10015
10015
20403
20403

M3
M3

0 Informatian “F
0 Information *F
0 Engineering, F
0 Engineering, F
0 Engineering, F
0 Engincering, F

Engineering, P

Engineering, P
0 Engineering, F
0 Engincering, F

100000
100000
52000
52000
52000
52000
115000
115000
52000
52000

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

@ Open the file.

@ Select the rows that have “intern” in the business title.

@ Print out those rows.

CSci 127 (Hunter)

Lecture 8

Civil Service "Title Codi Level Job Category Full-'Salary Range Salary Range

130000
130000
52000
52000
52000
52000
130000
130000
52000
52000

Summer 2020

30 /31

Recap

o Functions are a way to break code into pieces,
that can be easily reused.

#Name: your name here

#Date: October 2017

#This program, uses functions,
says hello to the world!

def main():
print("Hello, World!™)

if

__name__ == "__main__":
mainQ)
= = = E =]
CSci 127 (Hunter)

Lecture 8 Summer 2020 31/31

Recap

#Name: your name here
#Date: October 2017

#This program, uses functions,
says hello to the world!

mainQ:
print("Hello, World!™)

——name__ == "__main__":
main()

CSci 127 (Hunter)

o Functions are a way to break code into pieces,

that can be easily reused.

o Functions can have input parameters that

bring information into the function,

Lecture 8

Summer 2020

31/31

Recap

#Name: your name here
#Date: October 2017

#This program, uses functions,
says hello to the world!

mainQ:
print("Hello, World!™)

——name__ == "__main__":
main()

CSci 127 (Hunter)

o Functions are a way to break code into pieces,

that can be easily reused.

o Functions can have input parameters that

bring information into the function,

o And return values that send information back.

Lecture 8

Summer 2020

31/31

Recap

#Name: your name here
#Date: October 2017

#This program, uses functions,
says hello to the world!

mainQ:
print("Hello, World!™)

——name__ == "__main__":
main()

CSci 127 (Hunter)

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Lecture 8 Summer 2020 31/31

Recap

#Name: your name here
#Date: October 2017

#This program, uses functions,
says hello to the world!

mainQ:
print("Hello, World!™)

——name__ == "__main__":
main()

CSci 127 (Hunter)

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Lecture 8 Summer 2020 31/31

Recap

#Name: your name here
#Date: October 2017

#This program, uses functions,
says hello to the world!

mainQ:
print("Hello, World!™)

——name__ == "__main__":
main()

CSci 127 (Hunter)

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

Lecture 8 Summer 2020 31/31

Recap

#Name: your name here
#Date: October 2017

#This program, uses functions,
says hello to the world!

mainQ:
print("Hello, World!™)

——name__ == "__main__":
main()

CSci 127 (Hunter)

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

Log in to Gradescope to take Quiz 8

Lecture 8 Summer 2020 31/31

