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Input Parameters & Return Values

o Functions can have input
parameters.

def totalWithTax(food,tip):
total = @
tax = 0.0875
total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: "))
1Tip = float(input('Enter lunch tip:' ))
1Total = totalWithTax(lunch, 1Tip)
print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip:' ))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)
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Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters
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def totalW"LthTa

total = @
tax — 0.0875 Formal Parameters

total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: "))
1Tip = float(input('Entg ach tip:' ))
1Total = totalWithTax p
print('Lunch total is', otd
Actual Parameters
dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter.digper tip:' ))
dTotal = totalWithTax
print('Dinner total is', @
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Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parenthesis, both

in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters.

Functions can also return
values to where it was called.
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Challenge:

o What are the formal parameters? What is returned?

def enigmal(x,y,z):
if x == len(y):
return(z)
elif x < len(y):
return(y[0:x])

def contl(st):
—
for i in range(len(st)-1,-1,-1):

r =1 + st[i]

return(r)
else:
s = contl(z)
return(s+y)
(a) enigmal(7,"caramel", "dulce de leche") ‘ ‘
Return:
b) enigmal(3,"cupcake","vanilla") ‘ ‘
(b) & P Return:
¢) enigmal(10,"pie","nomel") ‘ ‘
(c) & P Return:

=] = = = DAQ
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Python Tutor

(Demo with pythonTutor)
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Input Parameters

o When called, the actual
parameter values are copied to
def totalWithTaTaod, EipTD the formal parameters.

tgial ;.3875 Formal Parameters
total = food + food * tax

total = total + tip

return(total)

lunch = float(input('Enter lunch total: '))
1Tip = float(input('Entg ach _tip:' )
1Total = totalWithTa @
print('Lunch total is', ota
Actual Parameters
dinner= float(input('Enter dmner‘ total D))
dTip = float(input('Entep.d ip:" ))
dTotal = totalWithTax
print('Dinner total is',
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Input Parameters
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Input Parameters

o When called, the actual
parameter values are copied to
def totalWithTaxCTood, EipT: the formal parameters.
B I P
tax - 0.0875 Formal Parameters A” th d . d th
total = food + food * tax ° € commands Inside €
total = total + tip H
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o The copies are discarded when
the function is done.
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Input Parameters

def totalWithTaxCFood, tip)D

total = @
tax - 0.0875 Formal Parameters
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When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.
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Input Parameters: What about Lists?

@ When called, the actual parameter values
4ot 2013 Final Bran. 5 are copied to the formal parameters.

def kuwae( inlst ):
tot = 1
for item in inLst:
tot = tot * item
return tot

def foo( inlst ):
if ( inlst[-1] > inLst[@] ):
return kuwae( inLst )
else:
return -

foo( [2, 4, 6, 8] )

foo( [4002, 328, 457, 1] )
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Input Parameters: What about Lists?

#Fall 2013 Final Exam, 5

def kuwae( inlst ):
tot = 1
for item in inLst:
tot = tot * item
return tot

def foo( inlst ):

if (inlst[-1] > inLst[0] ):

return kuwae( inLst )
else:
return -

foo( [2, 4, 6, 8] )

foo( [4002, 328, 457, 1] )

CSci 127 (Hunter)

@ When called, the actual parameter values
are copied to the formal parameters.

@ What is copied with a list?

o The address of the list, but not the
individual elements.
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Input Parameters: What about Lists?

@ When called, the actual parameter values
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tot = tot * item
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Input Parameters: What about Lists?

@ When called, the actual parameter values

et 2013 it o, 3 are copied to the formal parameters.
def kuwae( inlst ):

ot = 1 . . . .

for tten in fnLst: o What is copied with a list?

tot = tot * item
return tot

def foo( inlst ):

o The address of the list, but not the
o owaed sty individual elements.

else:
return -

o The actual parameters do not change, but
the inside elements might.

foo( [2, 4, 6, 8] )

foo( [4002, 328, 457, 1] )

o Easier to see with a demo.
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Python Tutor

#Fall 2013 Final Exam, 5

def kuwae( inLst ):
tot =1
for item in dinlst:
tot = tot * item
return tot

def foo( inlst ): (Demo with pythonTutor)

if ( inlst[-1] > inLst[@] ):
return kuwae( inlst )
else:
return -1

foo( [2, 4, 6, 8] )

foo( [4002, 328, 457, 1] )

CSci 127 (Hunter) Lecture 8 Summer 2020 10 / 31



Challenge:

def bar(n):
if n <= 8:
return 1
else:
return O

def foo(l):
n = bar(1[-1])
return 1[n]

o What are the formal parameters for the functions?

o What is the output of:
r = foo([1,2,3,4])
print ("Return: ", r)
o What is the output of:

r = foo([1024,512,256,128])
print ("Return: ", r)

CSci 127 (Hunter) Lecture 8 Summer 2020
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Python Tutor

def bar(n):
if n <= 8:
return 1
else:
return 0 (Demo with pythonTutor)
def foo(1):
n = bar(1[-11)
return 1[n]
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Challenge:

Predict what the code will do:

#(CSci 127 Teaching Staff
#Triangles two ways...
import turtle

def setUp(t, dist, col):

t.penup(Q)
t.forward(dist) .
t.pendown() def mainQ):
t.color(col) i nessa = turtle.Turtle()
def nestedTriangle(t, side): | setUp(nessa, 100, "violet")
if side > 10: nestedTriangle(nessa, 160)

for i in range(3):
t.forward(side) \
t.1eft(120) frank = turtle.Turtle()

nestedTriangle(t, side/2) ! setUp(fr‘ank, -1@0, nr‘edn)
def fractalTriangle(t, side): Fr‘actalTr‘iangle(Fr‘ank, 160)

if side > 10:
for i in range(3): . " . .
t. forward(side) if __name__ == "__main__":
t.left(120) main()

fractalTriangle(t, side/2)

CSci 127 (Hunter) Lecture 8 Summer 2020
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IDLE

#CSci 127 Teaching Staff
#Triangles two ways.
import turtle

def setUp(t, dist, col):
t.penup()
t. forward(dist)
t.pendown()
t.color(col)

def nestedTriangleCt, side): .
if side > 10:
A ——. (Demo with IDLE)
t.forward(side)
t.1eft(120)

nestedTriangle(t, side/2)

def fractalTriangle(t, side):
f side > 10:

for i in range(3):
t. forward(side)
t.1eft(120)

fractalTriangleCt, side/2)

CSci 127 (Hunter)

o F
Lecture 8

Summer 2020 14 /31



Today's Topics

CSci 127 (Hunter)

©

©

(%]

©

©

More on Functions
Recap: Open Data
Top Down Design
Github

Design Challenge:

Lecture 8



OpenData Design Question
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Design an algorithm that finds the closest collision.

(Sample NYC OpenData collision data file on back of lecture sli%)
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OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

(]

Create a “To Do" list of what your program has to accomplish.

©

Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.

©

Example:

@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.

@ Open up the CSV file.

@ Check distance to each to user's location.

® Print the location with the smallest distance.
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OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.
o Don't worry if you don't know how to do all the items you write down.
o Example:
@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.
@ Open up the CSV file.
@ Check distance to each to user’s location.
® Print the location with the smallest distance.
o Let’s use function names as placeholders for the ones we're unsure...
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OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

@ Find data set (great place to look: NYC OpenData).
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OpenData Design Question
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Top-Down Design
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o The last example demonstrates

top-down design: breaking into
subproblems, and implementing each
part separately.

F = = £ DA
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Top-Down Design

o The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

» Break the problem into tasks for a

“To Do" list.
» Translate list into function names &
inputs/returns.
=] = = = = a
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Top-Down Design

o The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

» Break the problem into tasks for a
“To Do” list.

» Translate list into function names &
inputs/returns.

» Implement the functions, one-by-one.

o Excellent approach since you can then
test each part separately before adding
it to a large program.
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Top-Down Design

o The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

» Break the problem into tasks for a
“To Do” list.

» Translate list into function names &
inputs/returns.

» Implement the functions, one-by-one.

o Excellent approach since you can then
test each part separately before adding
it to a large program.

o Very common when working with a
team: each has their own functions to
implement and maintain.

o F = = £ DA
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Challenge:

http://koalastothemax.com
o Top-down design puzzle:

» What does koalastomax do?

» What does each circle represent?

o Write a high-level design for it.

o Translate into code with function calls.
CSci 127 (Hunter)
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Demo
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Demo

2 ! byl
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CSci 127 (Hunter)

Demo

<

im]
Amazon.com:

koalastothemax.com
Paul Ford: Wh,

Bloomberg

Google for Education

Made with love by Vadim Ogievetsky for Annie Albagl / Powered by D3

Lecture 8
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Design: Koalas to the Max

o Input: Image & mouse movements

CSci 127 (Hunter)
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o Input: Image & mouse movements

o Output: Completed image
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o Input: Image & mouse movements
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o Design:

» Every mouse movement,

CSci 127 (Hunter)

Lecture 8

DA
Summer 2020 25 /31



Design: Koalas to the Max

o Input: Image & mouse movements

o Output: Completed image

o Design:

» Every mouse movement,
»>

Divide the region into 4 quarters.
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Design: Koalas to the Max

o Input: Image & mouse movements

o Output: Completed image
o Design:

» Every mouse movement,
> Divide the region into 4 quarters.
> Average the color of each quarter.

CSci 127 (Hunter)
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Design: Koalas to the Max

o Input: Image & mouse movements

o Output: Completed image
o Design:

» Every mouse movement,
»>
| 4

Divide the region into 4 quarters.
Average the color of each quarter.
>

Set each quarter to its average.
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Averaging numpy arrays

o Average each color channel of the image:
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Averaging numpy arrays

o Average each color channel of the image:

redAve

np.average (region[:,:,0])
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Averaging numpy arrays

o Average each color channel of the image:

redAve

greenAve =

np.average (region[:,:,0])
= np.average(region[:,:,1])
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Averaging numpy arrays

o Average each color channel of the image:

redAve
greenAve
bluelve

np.average (region[:,:,0])

np.average(region[:,:,1])
np.average (region[:,:,2])
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Averaging numpy arrays

o Average each color channel of the image:

redAve
greenAve
bluelve

np.average (region[:,:,0])

np.average(region[:,:,1])
np.average (region[:,:,2])
o Set each pixel to the average value:
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Averaging numpy arrays

o Average each color channel of the image:

redAve = np.average(region[:,:,0])
greenAve = np.average(region[:,:,1])
blueAve =

np.average (region[:,:,2])
o Set each pixel to the average value:

region[:,:,0] = redAve

o
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Averaging numpy arrays

o Average each color channel of the image:

redAve = np.average(region[:,:,0])
greenAve = np.average(region[:,:,1])
blueAve =

np.average (region[:,:,2])
o Set each pixel to the average value:

region[:,:,0] = redAve
region[:,:,1]

greenAve

o
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Averaging numpy arrays

o Average each color channel of the image:

o Set each pixel to the average value:

region[:,:,0] = redAve
regionl[:,:,1]
regionl[:,:,2]

greenAve
blueAve

o
CSci 127 (Hunter)

= = =
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redAve = np.average(region[:,:,0])
greenAve = np.average(region[:,:,1])
blueAve =

np.average (region[:,:,2])
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Averaging numpy arrays

o Average each color channel of the image:

redAve

greenAve =
bluelve

np.average (region[:,:,0])
o Set each pixel to the average value

np.average(region[:,:,1])
np.average (region[:,:,2])
region[:,:,0]

redAve
region[:,:,1] = greenAve

region[:,:,2] = blueAve
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Today's Topics
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More on Functions
Recap: Open Data
Top Down Design
Github

Design Challenge:
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Github

o Used to collaborate on and share code,

documents, etc.

Octocat
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o Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified under the same licencse.

o More formally: git is a version control
protocol for tracking changes and versions
of documents.

Octocat
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Github

Octocat
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Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified under the same licencse.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.
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Github

Octocat
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Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified under the same licencse.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.

Also convenient place to host websites
(i.e. huntercscil27.github.io).
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Github

Octocat

CSci 127 (Hunter)

Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified under the same licencse.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.

Also convenient place to host websites
(i.e. huntercscil27.github.io).

In Lab6 you set up github accounts to
copy (‘clone’) documents from the class
repo. (More in future courses.)
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Design Challenge

Job ID Agency Posting T# O Business Title Civil Service " Title Codi Level Job Category Full- Sal;
246814 DEPT OF INFO External 1 Senior Architect Cloud Infrastructure D SENIOR [T AF 6800 0 Information ' F
246814 DEPT OF INFQ Internal 1 Senior Architect Cloud Infrastructure Di SENIOR 1T AF 6800 0 Information ' F

247320 DEPT OF ENVI Internal = 2 MECHANICAL ENGINEERING INTERN ~ MECHANICA 20403 0 Engineering, F
247320 DEPT OF ENVI External 2 MECHANICAL ENGINEERING INTERN ~ MECHANICA 20403 0 Engineering, F
269885 DEPT OF ENVI External 1 MECHANICAL ENGINEERING INTERN ~ MECHANICA 20403 0 Engineering, F
269885 DEPT OF ENVI Internal = 1 MECHANICAL ENGINEERING INTERN  MECHANICA 20403 0 Engineering, F
285120 NYC HOUSING External 1 Deputy Director for Engineering ADMINISTRA 10015 M3 Engineering, P
285120 NYC HOUSING Internal = 1 Deputy Director for Engineering ADMINISTRA 10015 M3 Engineering, P
287202 DEPT OF ENVI External 4 MECHANICAL ENGINEERING INTERN ~ MECHANICA 20403 0 Engineering, F

287202 DEPT OF ENVI Internal = 4 MECHANICAL ENGINEERING INTERN ~ MECHANICA 20403 0 Engineering, F

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Find all current city job postings for internship positions.
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Design Challenge

Job ID
246814
286814
247320
247320
269885
269885
285120
285120
287202
287202

o Input: CSV file from NYC OpenData.

Agency Posting T# O Business Title

DEPT OF INFQ External
DEPT OF INFC Internal
DEPT OF ENVI Internal
DEPT OF ENVI External
DEPT OF ENVI External
DEPT OF ENVI Internal
NYC HOUSING External
NYC HOUSING Internal
DEPT OF ENVI External
DEPT OF ENVI Internal

2 MECHANICAL ENGINEERING INTERN
2 MECHANICAL ENGINEERING INTERN
1 MECHANICAL ENGINEERING INTERN
1 MECHANICAL ENGINEERING INTERN
1 Deputy Director for Engineering

1 Deputy Director for Engineering

4 MECHANICAL ENGINEERING INTERN
4 MECHANICAL ENGINEERING INTERN

Civil Service "Title Codi Level Job Category Full-'Salary Range Salary Range
1 Senior Architect Cloud Infrastructure DiSENIOR IT AF
1 Senior Architect Cloud Infrastructure Di SENIOR IT AF

MECHANICA
MECHANICA
MECHANICA
MECHANICA
ADMINISTRA
ADMINISTRA
MECHANICA
MECHANICA

M3
M3

0 Informatian “F
0 Information *F
0 Engineering, F
0 Engineering, F
0 Engineering, F
0 Engincering, F

Engineering, P

Engineering, P
0 Engineering, F
0 Engincering, F

100000
52000
52000
52000
52000

115000

115000
52000
52000

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)
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Design Challenge

Job ID
246814
286814
247320
247320
269885
269885
285120
285120
287202
287202

o Input: CSV file from NYC OpenData.
o Qutput: A list of internships offered by the city.

Agency Posting T# O Business Title

DEPT OF INFQ External
DEPT OF INFC Internal
DEPT OF ENVI Internal
DEPT OF ENVI External
DEPT OF ENVI External
DEPT OF ENVI Internal
NYC HOUSING External
NYC HOUSING Internal
DEPT OF ENVI External
DEPT OF ENVI Internal

2 MECHANICAL ENGINEERING INTERN
2 MECHANICAL ENGINEERING INTERN
1 MECHANICAL ENGINEERING INTERN
1 MECHANICAL ENGINEERING INTERN
1 Deputy Director for Engineering

1 Deputy Director for Engineering

4 MECHANICAL ENGINEERING INTERN
4 MECHANICAL ENGINEERING INTERN

Civil Service "Title Codi Level Job Category Full-'Salary Range Salary Range
1 Senior Architect Cloud Infrastructure DiSENIOR IT AF
1 Senior Architect Cloud Infrastructure Di SENIOR IT AF

MECHANICA
MECHANICA
MECHANICA
MECHANICA
ADMINISTRA
ADMINISTRA
MECHANICA
MECHANICA

M3
M3

0 Informatian “F
0 Information *F
0 Engineering, F
0 Engineering, F
0 Engineering, F
0 Engincering, F

Engineering, P

Engineering, P
0 Engineering, F
0 Engincering, F

100000
52000
52000
52000
52000

115000

115000
52000
52000

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)
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Design Challenge

Job ID
246814
286814
247320
247320
269885
269885
285120
285120
287202
287202

o Input: CSV file from NYC OpenData.
o Qutput: A list of internships offered by the city.

o Process:

Agency Posting T# O Business Title

DEPT OF INFQ External
DEPT OF INFC Internal
DEPT OF ENVI Internal
DEPT OF ENVI External
DEPT OF ENVI External
DEPT OF ENVI Internal
NYC HOUSING External
NYC HOUSING Internal
DEPT OF ENVI External
DEPT OF ENVI Internal

2 MECHANICAL ENGINEERING INTERN
2 MECHANICAL ENGINEERING INTERN
1 MECHANICAL ENGINEERING INTERN
1 MECHANICAL ENGINEERING INTERN
1 Deputy Director for Engineering

1 Deputy Director for Engineering

4 MECHANICAL ENGINEERING INTERN
4 MECHANICAL ENGINEERING INTERN

Civil Service "Title Codi Level Job Category Full-'Salary Range Salary Range
1 Senior Architect Cloud Infrastructure DiSENIOR IT AF
1 Senior Architect Cloud Infrastructure Di SENIOR IT AF

MECHANICA
MECHANICA
MECHANICA
MECHANICA
ADMINISTRA
ADMINISTRA
MECHANICA
MECHANICA

M3
M3

0 Informatian “F
0 Information *F
0 Engineering, F
0 Engineering, F
0 Engineering, F
0 Engincering, F

Engineering, P

Engineering, P
0 Engineering, F
0 Engincering, F

100000
52000
52000
52000
52000

115000

115000
52000
52000

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

CSci 127 (Hunter)
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Design Challenge

Job ID
246814
286814
247320
247320
269885
269885
285120
285120
287202
287202

o Input: CSV file from NYC OpenData.
o Qutput: A list of internships offered by the city.

o Process:

Agency Posting T# O Business Title

DEPT OF INFQ External
DEPT OF INFC Internal
DEPT OF ENVI Internal
DEPT OF ENVI External
DEPT OF ENVI External
DEPT OF ENVI Internal
NYC HOUSING External
NYC HOUSING Internal
DEPT OF ENVI External
DEPT OF ENVI Internal

2 MECHANICAL ENGINEERING INTERN
2 MECHANICAL ENGINEERING INTERN
1 MECHANICAL ENGINEERING INTERN
1 MECHANICAL ENGINEERING INTERN
1 Deputy Director for Engineering

1 Deputy Director for Engineering

4 MECHANICAL ENGINEERING INTERN
4 MECHANICAL ENGINEERING INTERN

Civil Service "Title Codi Level Job Category Full-'Salary Range Salary Range
1 Senior Architect Cloud Infrastructure DiSENIOR IT AF
1 Senior Architect Cloud Infrastructure Di SENIOR IT AF

MECHANICA
MECHANICA
MECHANICA
MECHANICA
ADMINISTRA
ADMINISTRA
MECHANICA
MECHANICA

M3
M3

0 Informatian “F
0 Information *F
0 Engineering, F
0 Engineering, F
0 Engineering, F
0 Engincering, F

Engineering, P

Engineering, P
0 Engineering, F
0 Engincering, F

100000
52000
52000
52000
52000

115000

115000
52000
52000

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

@ Open the file.
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Design Challenge

lobID  Agency Posting T# O Business Title

246814 DEPT OF INFQ External
246814 DEPT OF INFC Internal
247320 DEPT OF ENVI Internal
247320 DEPT OF ENVI External
269885 DEPT OF ENVI External
269885 DEPT OF ENVI Internal
285120 NYC HOUSING External
285120 NYC HOUSING Internal
287202 DEPT OF ENVI External
287202 DEPT OF ENVI Internal

2 MECHANICAL ENGINEERING INTERN
2 MECHANICAL ENGINEERING INTERN
1 MECHANICAL ENGINEERING INTERN
1 MECHANICAL ENGINEERING INTERN
1 Deputy Director for Engineering

1 Deputy Director for Engineering

4 MECHANICAL ENGINEERING INTERN
4 MECHANICAL ENGINEERING INTERN

Civil Service "Title Codi Level Job Category Full-'Salary Range Salary Range
1 Senior Architect Cloud Infrastructure DiSENIOR IT AF
1 Senior Architect Cloud Infrastructure Di SENIOR IT AF

MECHANICA
MECHANICA
MECHANICA
MECHANICA
ADMINISTRA
ADMINISTRA
MECHANICA
MECHANICA

M3
M3

0 Informatian “F
0 Information *F
0 Engineering, F
0 Engineering, F
0 Engineering, F
0 Engincering, F

Engineering, P

Engineering, P
0 Engineering, F
0 Engincering, F

100000
52000
52000
52000
52000

115000

115000
52000
52000

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

o Input: CSV file from NYC OpenData.
o Qutput: A list of internships offered by the city.

o Process:
@ Open the file.

@ Select the rows that have “intern” in the business title.
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Design Challenge

Job ID
246814
286814
247320
247320
269885
269885
285120
285120
287202
287202

o Input: CSV file from NYC OpenData.
o Qutput: A list of internships offered by the city.

o Process:

Agency Posting T# O Business Title

DEPT OF INFQ External
DEPT OF INFC Internal
DEPT OF ENVI Internal
DEPT OF ENVI External
DEPT OF ENVI External
DEPT OF ENVI Internal
NYC HOUSING External
NYC HOUSING Internal
DEPT OF ENVI External
DEPT OF ENVI Internal

1 senior Architect Cloud Infrastructure DiSENIOR IT A
1 Senior Architect Cloud Infrastructure D SENIOR IT AR
2 MECHANICAL ENGINEERING INTERN  MECHANICA
2 MECHANICAL ENGINEERING INTERN | MECHANICA
1 MECHANICAL ENGINEERING INTERN  MECHANICA
1 MECHANICAL ENGINEERING INTERN | MECHANICA
1 Deputy Director for Engineering ADMINISTRA
1 Deputy Director for Engineering ADMINISTRA
4 MECHANICAL ENGINEERING INTERN  MECHANICA
4 MECHANICAL ENGINEERING INTERN  MECHANICA

6800
20403
20403
20403
20403
10015
10015
20403
20403

M3
M3

0 Informatian “F
0 Information *F
0 Engineering, F
0 Engineering, F
0 Engineering, F
0 Engincering, F

Engineering, P

Engineering, P
0 Engineering, F
0 Engincering, F

100000
100000
52000
52000
52000
52000
115000
115000
52000
52000

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

@ Open the file.

@ Select the rows that have “intern” in the business title.

@ Print out those rows.

CSci 127 (Hunter)
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Recap

o Functions are a way to break code into pieces,
that can be easily reused.

#Name: your name here

#Date: October 2017

#This program, uses functions,
#  says hello to the world!

def main():
print("Hello, World!™)

if

__name__ == "__main__":
mainQ)
= = = E =]
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Recap

#Name: your name here
#Date: October 2017

#This program, uses functions,
#  says hello to the world!

mainQ:
print("Hello, World!™)

——name__ == "__main__":
main()
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o Functions can have input parameters that
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main()
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Recap

#Name: your name here
#Date: October 2017

#This program, uses functions,
#  says hello to the world!

mainQ:
print("Hello, World!™)

——name__ == "__main__":
main()
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Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.
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mainQ:
print("Hello, World!™)

——name__ == "__main__":
main()

CSci 127 (Hunter)

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

Lecture 8 Summer 2020 31/31



Recap

#Name: your name here
#Date: October 2017

#This program, uses functions,
#  says hello to the world!

mainQ:
print("Hello, World!™)

——name__ == "__main__":
main()

CSci 127 (Hunter)

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

Log in to Gradescope to take Quiz 8
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