
CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

CSci 127 (Hunter) Lecture 10 Summer 2020 1 / 32



Announcements

Please always read all Blackboard
announcements

Online help is available in multiple forms:

I Email
I Discussion Board: on Blackboard, link

on purple menu bar
I Drop-in tutoring (Tu/W 1p - 2p)

CSci 127 (Hunter) Lecture 10 Summer 2020 2 / 32



Announcements

Please always read all Blackboard
announcements

Online help is available in multiple forms:

I Email
I Discussion Board: on Blackboard, link

on purple menu bar
I Drop-in tutoring (Tu/W 1p - 2p)

CSci 127 (Hunter) Lecture 10 Summer 2020 2 / 32



Announcements

Please always read all Blackboard
announcements

Online help is available in multiple forms:

I Email

I Discussion Board: on Blackboard, link
on purple menu bar

I Drop-in tutoring (Tu/W 1p - 2p)

CSci 127 (Hunter) Lecture 10 Summer 2020 2 / 32



Announcements

Please always read all Blackboard
announcements

Online help is available in multiple forms:

I Email
I Discussion Board: on Blackboard, link

on purple menu bar

I Drop-in tutoring (Tu/W 1p - 2p)

CSci 127 (Hunter) Lecture 10 Summer 2020 2 / 32



Announcements

Please always read all Blackboard
announcements

Online help is available in multiple forms:

I Email
I Discussion Board: on Blackboard, link

on purple menu bar
I Drop-in tutoring (Tu/W 1p - 2p)

CSci 127 (Hunter) Lecture 10 Summer 2020 2 / 32



Today’s Topics

Recap: Folium

Indefinite loops

Design Patterns: Max (Min)

Design Challenge

CSci 127 (Hunter) Lecture 10 Summer 2020 3 / 32



Today’s Topics

Recap: Folium

Indefinite loops

Design Patterns: Max (Min)

Design Challenge

CSci 127 (Hunter) Lecture 10 Summer 2020 4 / 32



Challenge:
What does this code do?

CSci 127 (Hunter) Lecture 10 Summer 2020 5 / 32



Folium example

What does this code do?

CSci 127 (Hunter) Lecture 10 Summer 2020 6 / 32



Folium example

What does this code do?

CSci 127 (Hunter) Lecture 10 Summer 2020 6 / 32



Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 10 Summer 2020 7 / 32



Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 10 Summer 2020 7 / 32



Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 10 Summer 2020 7 / 32



Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 10 Summer 2020 7 / 32



Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 10 Summer 2020 7 / 32



Today’s Topics

Recap: Folium

Indefinite loops

Design Patterns: Max (Min)

Design Challenge

CSci 127 (Hunter) Lecture 10 Summer 2020 8 / 32



Challenge:

Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number.

CSci 127 (Hunter) Lecture 10 Summer 2020 9 / 32



Coding
Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number..

CSci 127 (Hunter) Lecture 10 Summer 2020 10 / 32



Coding
Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number.

def getYear():

CSci 127 (Hunter) Lecture 10 Summer 2020 11 / 32



Coding
Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number.

def getYear():

return(num)

CSci 127 (Hunter) Lecture 10 Summer 2020 12 / 32



Coding
Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number.

def getYear():

num = 0

return(num)

CSci 127 (Hunter) Lecture 10 Summer 2020 13 / 32



Coding
Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number.

def getYear():

num = 0

while num <= 2000 or num >= 2018:

return(num)

CSci 127 (Hunter) Lecture 10 Summer 2020 14 / 32



Coding
Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number.

def getYear():

num = 0

while num <= 2000 or num >= 2018:

num = int(input(’Enter a number > 2000 & < 2018’))

return(num)

CSci 127 (Hunter) Lecture 10 Summer 2020 15 / 32



Indefinite Loops

Indefinite loops repeat as long as
the condition is true.

Could execute the body of the
loop zero times, 10 times, infinite
number of times.

The condition determines how
many times.

Very useful for checking input,
simulations, and games.

CSci 127 (Hunter) Lecture 10 Summer 2020 16 / 32



Indefinite Loops

Indefinite loops repeat as long as
the condition is true.

Could execute the body of the
loop zero times, 10 times, infinite
number of times.

The condition determines how
many times.

Very useful for checking input,
simulations, and games.

CSci 127 (Hunter) Lecture 10 Summer 2020 16 / 32



Indefinite Loops

Indefinite loops repeat as long as
the condition is true.

Could execute the body of the
loop zero times, 10 times, infinite
number of times.

The condition determines how
many times.

Very useful for checking input,
simulations, and games.

CSci 127 (Hunter) Lecture 10 Summer 2020 16 / 32



Indefinite Loops

Indefinite loops repeat as long as
the condition is true.

Could execute the body of the
loop zero times, 10 times, infinite
number of times.

The condition determines how
many times.

Very useful for checking input,
simulations, and games.

CSci 127 (Hunter) Lecture 10 Summer 2020 16 / 32



Indefinite Loops

Indefinite loops repeat as long as
the condition is true.

Could execute the body of the
loop zero times, 10 times, infinite
number of times.

The condition determines how
many times.

Very useful for checking input,
simulations, and games.

CSci 127 (Hunter) Lecture 10 Summer 2020 16 / 32



Indefinite Loops

CSci 127 (Hunter) Lecture 10 Summer 2020 17 / 32



Indefinite Loops

CSci 127 (Hunter) Lecture 10 Summer 2020 17 / 32



Challenge

Predict what this code does:

CSci 127 (Hunter) Lecture 10 Summer 2020 18 / 32



Trinket Demo

(Demo with trinket)

CSci 127 (Hunter) Lecture 10 Summer 2020 19 / 32



Today’s Topics

Recap: Folium

Indefinite loops

Design Patterns: Max (Min)

Design Challenge

CSci 127 (Hunter) Lecture 10 Summer 2020 20 / 32



Design Patterns

A design pattern is a standard algorithm
or approach for solving a common
problem.

The pattern is independent of the
programming language.

Can think of as a master recipe, with
variations for different situations.

CSci 127 (Hunter) Lecture 10 Summer 2020 21 / 32



Design Patterns

A design pattern is a standard algorithm
or approach for solving a common
problem.

The pattern is independent of the
programming language.

Can think of as a master recipe, with
variations for different situations.

CSci 127 (Hunter) Lecture 10 Summer 2020 21 / 32



Design Patterns

A design pattern is a standard algorithm
or approach for solving a common
problem.

The pattern is independent of the
programming language.

Can think of as a master recipe, with
variations for different situations.

CSci 127 (Hunter) Lecture 10 Summer 2020 21 / 32



Challenge:

Predict what the code will do:

CSci 127 (Hunter) Lecture 10 Summer 2020 22 / 32



Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 10 Summer 2020 23 / 32



Max Design Pattern

Set a variable to the smallest value.

Loop through the list,

If the current number is larger,
update your variable.

Print/return the largest number found.

Similar idea works for finding the
minimum value.

CSci 127 (Hunter) Lecture 10 Summer 2020 24 / 32



Max Design Pattern

Set a variable to the smallest value.

Loop through the list,

If the current number is larger,
update your variable.

Print/return the largest number found.

Similar idea works for finding the
minimum value.

CSci 127 (Hunter) Lecture 10 Summer 2020 24 / 32



Max Design Pattern

Set a variable to the smallest value.

Loop through the list,

If the current number is larger,
update your variable.

Print/return the largest number found.

Similar idea works for finding the
minimum value.

CSci 127 (Hunter) Lecture 10 Summer 2020 24 / 32



Max Design Pattern

Set a variable to the smallest value.

Loop through the list,

If the current number is larger,
update your variable.

Print/return the largest number found.

Similar idea works for finding the
minimum value.

CSci 127 (Hunter) Lecture 10 Summer 2020 24 / 32



Max Design Pattern

Set a variable to the smallest value.

Loop through the list,

If the current number is larger,
update your variable.

Print/return the largest number found.

Similar idea works for finding the
minimum value.

CSci 127 (Hunter) Lecture 10 Summer 2020 24 / 32



Pandas: Minimum Values

In Pandas, lovely built-in functions:

I df.sort values(’First Name’) and
I df[’First Name’].min()

What if you don’t have a CSV and DataFrame, or data not ordered?

CSci 127 (Hunter) Lecture 10 Summer 2020 25 / 32



Pandas: Minimum Values

In Pandas, lovely built-in functions:
I df.sort values(’First Name’) and
I df[’First Name’].min()

What if you don’t have a CSV and DataFrame, or data not ordered?

CSci 127 (Hunter) Lecture 10 Summer 2020 25 / 32



Pandas: Minimum Values

In Pandas, lovely built-in functions:
I df.sort values(’First Name’) and
I df[’First Name’].min()

What if you don’t have a CSV and DataFrame, or data not ordered?

CSci 127 (Hunter) Lecture 10 Summer 2020 25 / 32



Design Question: Find first alphabetically

What if you don’t have a CSV and DataFrame, or data not ordered?

Useful Design Pattern: min/max
I Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
I For each item, X, in the list:

F Compare X to your variable.
F If better, update your variable to be X.

I Print/return X.

CSci 127 (Hunter) Lecture 10 Summer 2020 26 / 32



Design Question: Find first alphabetically

What if you don’t have a CSV and DataFrame, or data not ordered?

Useful Design Pattern: min/max

I Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
I For each item, X, in the list:

F Compare X to your variable.
F If better, update your variable to be X.

I Print/return X.

CSci 127 (Hunter) Lecture 10 Summer 2020 26 / 32



Design Question: Find first alphabetically

What if you don’t have a CSV and DataFrame, or data not ordered?

Useful Design Pattern: min/max
I Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").

I For each item, X, in the list:
F Compare X to your variable.
F If better, update your variable to be X.

I Print/return X.

CSci 127 (Hunter) Lecture 10 Summer 2020 26 / 32



Design Question: Find first alphabetically

What if you don’t have a CSV and DataFrame, or data not ordered?

Useful Design Pattern: min/max
I Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
I For each item, X, in the list:

F Compare X to your variable.
F If better, update your variable to be X.

I Print/return X.

CSci 127 (Hunter) Lecture 10 Summer 2020 26 / 32



Design Question: Find first alphabetically

What if you don’t have a CSV and DataFrame, or data not ordered?

Useful Design Pattern: min/max
I Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
I For each item, X, in the list:

F Compare X to your variable.

F If better, update your variable to be X.

I Print/return X.

CSci 127 (Hunter) Lecture 10 Summer 2020 26 / 32



Design Question: Find first alphabetically

What if you don’t have a CSV and DataFrame, or data not ordered?

Useful Design Pattern: min/max
I Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
I For each item, X, in the list:

F Compare X to your variable.
F If better, update your variable to be X.

I Print/return X.

CSci 127 (Hunter) Lecture 10 Summer 2020 26 / 32



Design Question: Find first alphabetically

What if you don’t have a CSV and DataFrame, or data not ordered?

Useful Design Pattern: min/max
I Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
I For each item, X, in the list:

F Compare X to your variable.
F If better, update your variable to be X.

I Print/return X.

CSci 127 (Hunter) Lecture 10 Summer 2020 26 / 32



Today’s Topics

Recap: Folium

Indefinite loops

Design Patterns: Max (Min)

Design Challenge

CSci 127 (Hunter) Lecture 10 Summer 2020 27 / 32



Design Challenge

Collect all five stars (locations randomly generated):

CSci 127 (Hunter) Lecture 10 Summer 2020 28 / 32



Design Challenge

Possible approaches:

I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:

I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

CSci 127 (Hunter) Lecture 10 Summer 2020 29 / 32



Design Challenge

Possible approaches:

I Randomly wander until all 5 collected, or

I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:

I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

CSci 127 (Hunter) Lecture 10 Summer 2020 29 / 32



Design Challenge

Possible approaches:

I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:

I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

CSci 127 (Hunter) Lecture 10 Summer 2020 29 / 32



Design Challenge

Possible approaches:

I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:

I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

CSci 127 (Hunter) Lecture 10 Summer 2020 29 / 32



Design Challenge

Possible approaches:

I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:

I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

CSci 127 (Hunter) Lecture 10 Summer 2020 29 / 32



Design Challenge

Possible approaches:

I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:

I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

CSci 127 (Hunter) Lecture 10 Summer 2020 29 / 32



Design Challenge

Possible approaches:

I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:

I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

CSci 127 (Hunter) Lecture 10 Summer 2020 29 / 32



Design Challenge

Possible approaches:

I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:

I Move forward.

I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

CSci 127 (Hunter) Lecture 10 Summer 2020 29 / 32



Design Challenge

Possible approaches:

I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:

I Move forward.
I If wall, mark 0 in map, randomly turn left or right.

I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

CSci 127 (Hunter) Lecture 10 Summer 2020 29 / 32



Design Challenge

Possible approaches:

I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:

I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.

I Otherwise, mark 2 in map that it’s an empty square.

CSci 127 (Hunter) Lecture 10 Summer 2020 29 / 32



Design Challenge

Possible approaches:

I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:

I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

CSci 127 (Hunter) Lecture 10 Summer 2020 29 / 32



Recap

Quick recap of a Python library, Folium for
creating interactive HTML maps.

More details on while loops for repeating
commands for an indefinite number of times.

Introduced the max design pattern.

CSci 127 (Hunter) Lecture 10 Summer 2020 30 / 32



Recap

Quick recap of a Python library, Folium for
creating interactive HTML maps.

More details on while loops for repeating
commands for an indefinite number of times.

Introduced the max design pattern.

CSci 127 (Hunter) Lecture 10 Summer 2020 30 / 32



Recap

Quick recap of a Python library, Folium for
creating interactive HTML maps.

More details on while loops for repeating
commands for an indefinite number of times.

Introduced the max design pattern.

CSci 127 (Hunter) Lecture 10 Summer 2020 30 / 32



Final Exam Prep: UNIX

xkcd 149

This course has three main themes:
I Programming & Problem Solving

I Organization of Hardware & Data
I Design

The operating system, Unix, is part of
the second theme.

Unix commands in the weekly on-line
labs

CSci 127 (Hunter) Lecture 10 Summer 2020 31 / 32



Final Exam Prep: UNIX

xkcd 149

This course has three main themes:
I Programming & Problem Solving
I Organization of Hardware & Data

I Design

The operating system, Unix, is part of
the second theme.

Unix commands in the weekly on-line
labs

CSci 127 (Hunter) Lecture 10 Summer 2020 31 / 32



Final Exam Prep: UNIX

xkcd 149

This course has three main themes:
I Programming & Problem Solving
I Organization of Hardware & Data
I Design

The operating system, Unix, is part of
the second theme.

Unix commands in the weekly on-line
labs

CSci 127 (Hunter) Lecture 10 Summer 2020 31 / 32



Final Exam Prep: UNIX

xkcd 149

This course has three main themes:
I Programming & Problem Solving
I Organization of Hardware & Data
I Design

The operating system, Unix, is part of
the second theme.

Unix commands in the weekly on-line
labs

CSci 127 (Hunter) Lecture 10 Summer 2020 31 / 32



Final Exam Prep: UNIX

xkcd 149

This course has three main themes:
I Programming & Problem Solving
I Organization of Hardware & Data
I Design

The operating system, Unix, is part of
the second theme.

Unix commands in the weekly on-line
labs

CSci 127 (Hunter) Lecture 10 Summer 2020 31 / 32



Final Exam Prep: UNIX

xkcd 149

Unix commands in the weekly on-line labs:

Lab 2: pwd, ls, mkdir, cd

Lab 3: ls -l, cp, mv

Lab 4: cd ../ (relative paths)

Lab 5: cd /usr/bin (absolute paths), cd ∼

Lab 6: Scripts, chmod

Lab 7: Running Python from the command line

Lab 8: git from the command line

Lab 9: ls *.py (wildcards)

Lab 10: More on scripts, vim

Lab 11: ls | wc -c (pipes), grep, wc

Lab 12: file, which

Lab 13: man, more, w

CSci 127 (Hunter) Lecture 10 Summer 2020 32 / 32



Final Exam Prep: UNIX

xkcd 149

Unix commands in the weekly on-line labs:

Lab 2: pwd, ls, mkdir, cd

Lab 3: ls -l, cp, mv

Lab 4: cd ../ (relative paths)

Lab 5: cd /usr/bin (absolute paths), cd ∼

Lab 6: Scripts, chmod

Lab 7: Running Python from the command line

Lab 8: git from the command line

Lab 9: ls *.py (wildcards)

Lab 10: More on scripts, vim

Lab 11: ls | wc -c (pipes), grep, wc

Lab 12: file, which

Lab 13: man, more, w

CSci 127 (Hunter) Lecture 10 Summer 2020 32 / 32



Final Exam Prep: UNIX

xkcd 149

Unix commands in the weekly on-line labs:

Lab 2: pwd, ls, mkdir, cd

Lab 3: ls -l, cp, mv

Lab 4: cd ../ (relative paths)

Lab 5: cd /usr/bin (absolute paths), cd ∼

Lab 6: Scripts, chmod

Lab 7: Running Python from the command line

Lab 8: git from the command line

Lab 9: ls *.py (wildcards)

Lab 10: More on scripts, vim

Lab 11: ls | wc -c (pipes), grep, wc

Lab 12: file, which

Lab 13: man, more, w

CSci 127 (Hunter) Lecture 10 Summer 2020 32 / 32



Final Exam Prep: UNIX

xkcd 149

Unix commands in the weekly on-line labs:

Lab 2: pwd, ls, mkdir, cd

Lab 3: ls -l, cp, mv

Lab 4: cd ../ (relative paths)

Lab 5: cd /usr/bin (absolute paths), cd ∼

Lab 6: Scripts, chmod

Lab 7: Running Python from the command line

Lab 8: git from the command line

Lab 9: ls *.py (wildcards)

Lab 10: More on scripts, vim

Lab 11: ls | wc -c (pipes), grep, wc

Lab 12: file, which

Lab 13: man, more, w

CSci 127 (Hunter) Lecture 10 Summer 2020 32 / 32



Final Exam Prep: UNIX

xkcd 149

Unix commands in the weekly on-line labs:

Lab 2: pwd, ls, mkdir, cd

Lab 3: ls -l, cp, mv

Lab 4: cd ../ (relative paths)

Lab 5: cd /usr/bin (absolute paths), cd ∼

Lab 6: Scripts, chmod

Lab 7: Running Python from the command line

Lab 8: git from the command line

Lab 9: ls *.py (wildcards)

Lab 10: More on scripts, vim

Lab 11: ls | wc -c (pipes), grep, wc

Lab 12: file, which

Lab 13: man, more, w

CSci 127 (Hunter) Lecture 10 Summer 2020 32 / 32



Final Exam Prep: UNIX

xkcd 149

Unix commands in the weekly on-line labs:

Lab 2: pwd, ls, mkdir, cd

Lab 3: ls -l, cp, mv

Lab 4: cd ../ (relative paths)

Lab 5: cd /usr/bin (absolute paths), cd ∼

Lab 6: Scripts, chmod

Lab 7: Running Python from the command line

Lab 8: git from the command line

Lab 9: ls *.py (wildcards)

Lab 10: More on scripts, vim

Lab 11: ls | wc -c (pipes), grep, wc

Lab 12: file, which

Lab 13: man, more, w

CSci 127 (Hunter) Lecture 10 Summer 2020 32 / 32



Final Exam Prep: UNIX

xkcd 149

Unix commands in the weekly on-line labs:

Lab 2: pwd, ls, mkdir, cd

Lab 3: ls -l, cp, mv

Lab 4: cd ../ (relative paths)

Lab 5: cd /usr/bin (absolute paths), cd ∼

Lab 6: Scripts, chmod

Lab 7: Running Python from the command line

Lab 8: git from the command line

Lab 9: ls *.py (wildcards)

Lab 10: More on scripts, vim

Lab 11: ls | wc -c (pipes), grep, wc

Lab 12: file, which

Lab 13: man, more, w

CSci 127 (Hunter) Lecture 10 Summer 2020 32 / 32



Final Exam Prep: UNIX

xkcd 149

Unix commands in the weekly on-line labs:

Lab 2: pwd, ls, mkdir, cd

Lab 3: ls -l, cp, mv

Lab 4: cd ../ (relative paths)

Lab 5: cd /usr/bin (absolute paths), cd ∼

Lab 6: Scripts, chmod

Lab 7: Running Python from the command line

Lab 8: git from the command line

Lab 9: ls *.py (wildcards)

Lab 10: More on scripts, vim

Lab 11: ls | wc -c (pipes), grep, wc

Lab 12: file, which

Lab 13: man, more, w

CSci 127 (Hunter) Lecture 10 Summer 2020 32 / 32



Final Exam Prep: UNIX

xkcd 149

Unix commands in the weekly on-line labs:

Lab 2: pwd, ls, mkdir, cd

Lab 3: ls -l, cp, mv

Lab 4: cd ../ (relative paths)

Lab 5: cd /usr/bin (absolute paths), cd ∼

Lab 6: Scripts, chmod

Lab 7: Running Python from the command line

Lab 8: git from the command line

Lab 9: ls *.py (wildcards)

Lab 10: More on scripts, vim

Lab 11: ls | wc -c (pipes), grep, wc

Lab 12: file, which

Lab 13: man, more, w

CSci 127 (Hunter) Lecture 10 Summer 2020 32 / 32



Final Exam Prep: UNIX

xkcd 149

Unix commands in the weekly on-line labs:

Lab 2: pwd, ls, mkdir, cd

Lab 3: ls -l, cp, mv

Lab 4: cd ../ (relative paths)

Lab 5: cd /usr/bin (absolute paths), cd ∼

Lab 6: Scripts, chmod

Lab 7: Running Python from the command line

Lab 8: git from the command line

Lab 9: ls *.py (wildcards)

Lab 10: More on scripts, vim

Lab 11: ls | wc -c (pipes), grep, wc

Lab 12: file, which

Lab 13: man, more, w

CSci 127 (Hunter) Lecture 10 Summer 2020 32 / 32



Final Exam Prep: UNIX

xkcd 149

Unix commands in the weekly on-line labs:

Lab 2: pwd, ls, mkdir, cd

Lab 3: ls -l, cp, mv

Lab 4: cd ../ (relative paths)

Lab 5: cd /usr/bin (absolute paths), cd ∼

Lab 6: Scripts, chmod

Lab 7: Running Python from the command line

Lab 8: git from the command line

Lab 9: ls *.py (wildcards)

Lab 10: More on scripts, vim

Lab 11: ls | wc -c (pipes), grep, wc

Lab 12: file, which

Lab 13: man, more, w

CSci 127 (Hunter) Lecture 10 Summer 2020 32 / 32



Final Exam Prep: UNIX

xkcd 149

Unix commands in the weekly on-line labs:

Lab 2: pwd, ls, mkdir, cd

Lab 3: ls -l, cp, mv

Lab 4: cd ../ (relative paths)

Lab 5: cd /usr/bin (absolute paths), cd ∼

Lab 6: Scripts, chmod

Lab 7: Running Python from the command line

Lab 8: git from the command line

Lab 9: ls *.py (wildcards)

Lab 10: More on scripts, vim

Lab 11: ls | wc -c (pipes), grep, wc

Lab 12: file, which

Lab 13: man, more, w

CSci 127 (Hunter) Lecture 10 Summer 2020 32 / 32



Final Exam Prep: UNIX

xkcd 149

Unix commands in the weekly on-line labs:

Lab 2: pwd, ls, mkdir, cd

Lab 3: ls -l, cp, mv

Lab 4: cd ../ (relative paths)

Lab 5: cd /usr/bin (absolute paths), cd ∼

Lab 6: Scripts, chmod

Lab 7: Running Python from the command line

Lab 8: git from the command line

Lab 9: ls *.py (wildcards)

Lab 10: More on scripts, vim

Lab 11: ls | wc -c (pipes), grep, wc

Lab 12: file, which

Lab 13: man, more, w

CSci 127 (Hunter) Lecture 10 Summer 2020 32 / 32


