CSCI 127: Introduction to Computer Science

CSCl 127 (Hunter)

hunter.cuny.edu/csci
o =
Lecture 9

A
March 26, 2024

1/36

Today's Topics

o Recap: Functions & Top Down Design

o Mapping GIS Data
o Random Numbers

o Indefinite Loops

CSCl 127 (Hunter) Lecture 9

Today's Topics

o Recap: Functions & Top Down Design
o Mapping GIS Data
o Random Numbers

o Indefinite Loops

] = = = DQAC
March 26, 2024 3 /36

CSCl 127 (Hunter) Lecture 9

Challenge:

def prob4(amy, beth): def helper (meg, jo):

g ="

if amy > 4:
print ("Easy case") for j in range(meg):
kate = -1 print(j, ": ", jo[jD
else: if j %2 ==0:
s =s + jol[jl

print ("Complex case")
kate = helper (amy,beth)

return(kate)

print("Building s:", s)
return(s)

o What are the formal parameters for the functions?

o What is the output of:

r = prob4(4,"city")
print ("Return: ", r)

o What is the output of:

r = prob4(2,"university")
print ("Return: ", r)

CSCl 127 (Hunter) Lecture 9 March 26, 2024 4 /36

Challenge:

def prob4(amy, beth): def helper (meg, jo):
if amy > 4: s =""
print ("Easy case") for j in range(meg):
kate = -1 print(j, ": ", jo[jD
else: if j % 2 == 0:
print ("Complex case") s = s + jo[jl
kate = helper (amy,beth) print("Building s:", s)
return(kate) return(s)

o What are the formal parameters for the functions?

CSCl 127 (Hunter) Lecture 9 March 26, 2024 5/ 36

Challenge:

def prob
if amy > 4:

print ("Easy case")
else:

kate -1

€
def he e
for j in range(meg):
Formal
Parameters
print ("Complex case")
kate = helper (amy,beth)
return(kate)

print(j, ": ", jo[jl)
if 3 %h2==0:
s = s + jol[j]
return(s)

print("Building s:", s)
o What are the formal parameters for the functions?

CSCl 127 (Hunter)

Lecture 9

March 26, 2024

6/ 36

Challenge:

def helper (meg, jo):

def prob4(amy, beth):

if amy > 4: s =
print ("Easy case") for j in range(meg):
kate = -1 print(j, ": ", jo[jD
else: if j % 2 ==0:
print ("Complex case") s = s + jo[jl
kate = helper (amy,beth) print("Building s:", s)
return(s)

return(kate)

o What is the output of:

r = prob4d(4,"city")
print ("Return: ", r)

o What is the output of:

r = prob4(2,"university")
print ("Return: ", r)

CSCl 127 (Hunter) Lecture 9 March 26, 2024 7 /36

Python Tutor

def prob4(amy, beth):

if amy > 4:
print ("Easy case")
kate = -1

else:

print ("Complex case")
kate = helper (amy,beth)
return(kate)

o Demo with pythonTutor

def helper(meg,jo):
s =
for j in range(meg):
print(j, ": ", jo[jl)
if % 2 ==0:
s =s + jo[jl
print("Building s:", s)
return(s)

o "Sisters Example” under week 9 handouts (on course page)

CSCl 127 (Hunter)

Lecture 9

March 26, 2024

8/ 36

https://huntercsci127.github.io/f23.html

Top-Down Design

o Top-down design is the process of breaking the task into
subproblems and implementing each part separately.

» Break the problem into tasks for a “To Do" list.
» Translate list into function names & inputs/returns.
» Implement the functions, one-by-one.
o Excellent approach since you can then test each part separately before
adding it to a large program.
o Very common when working with a team: each has their own
functions to implement and maintain.

CSCl 127 (Hunter) Lecture 9 March 26, 2024 9 /36

Challenge:

Write the missing functions for the program:

1 | def main():
2 #setUp: returns a purple turtle with pen up
3 tess = setUp()
4 for i in range(5):
5 #getInput: returns two numbers from user input
6 X,y = getInput()
7 #markLocation: moves tess to (x,y) and stamps
8 markLocation(tess,x,y)
oy 3 = E = 9

CSCl 127 (Hunter) Lecture 9 March 26, 2024 10 / 36

Group Work: Fill in Missing Pieces

@ Write import statements.

1 [import turtle }

CSCl 127 (Hunter) Lecture 9 March 26, 2024 11 /36

Fill in Missing Pieces

@ Write import statements.

@ Write down new function names and inputs.

e a
1 | def setUp():
2 #FILL IN
3 | def getInput(Q):
4 #FILL IN
5 | def markLocation(t,x,y):
6 #FILL IN
- J
CSCI 127 (Hunter) Lecture 9 March 26, 2024 12 /36

Fill in Missing Pieces

@ Write import statements.
@ Write down new function names and inputs.

@ Fill in return values.

1 | def setUpQ):
2 #FILL IN
3 return newTurtle
4 |def getInput():
5 #FILL IN
6 return x,y
7 | def markLocation(t,x,y):
8 #FILL IN
9 #does not return a value
-
CSCI 127 (Hunter) Lecture 9 March 26, 2024 13 / 36

Fill in Missing Pieces

@ Write import statements.

@ Write down new function names and inputs.
@ Fill in return values.

@ Fill in body of functions.

1 | def setUp():

2 #Create a new turtle

3 newTurtle = turtle.Turtle()

4 #Set the turtle so the pen is up

5 newTurtle.penup()

6 #Set the turtle so that the color is purple
7 newTurtle.color("purple")

8 #return the turtle with the setup

9 return newTurtle

CSCl 127 (Hunter) Lecture 9 March 26, 2024 14 / 36

Fill in Missing Pieces

@ Write import statements.

@ Write down new function names and inputs.
@ Fill in return values.

@ Fill in body of functions.

[def getInput():)
2 #Ask the user for a value, convert it to
3 #an int and store it in x
4 x = int(input("Enter x: "))
5 #Ask the user for another value, convert it to
6 #an int and store it in y
7 y = int(input("Enter y: "))
8 #we can return two items in python
9 return x, y
J
oy 3 = E = 9

CSCl 127 (Hunter) Lecture 9 March 26, 2024 15 / 36

Fill in Missing Pieces

@ Write import statements.

@ Write down new function names and inputs.
@ Fill in return values.

@ Fill in body of functions.

1 | def markLocation(t, x, y):
2 #t is the turtle given to the function
3 #x and y are locations given to the function
4 t.goto(x, y)
5 t.stamp()
6 #does not return a value

-~

CSCI 127 (Hunter) Lecture 9 March 26, 2024

16 / 36

Complete Code (1/2)

10

11

12

13

import turtle

def main():
tess = setUp()
for i in range(5):
x,y = getInput()
markLocation(tess,x,y)

def setUp():
newTurtle = turtle.Turtle()
newTurtle.color("purple")
newTurtle.penup()
return (newTurtle)

CSCl 127 (Hunter) Lecture 9

March 26, 2024

17 / 36

Complete Code (2/2)

1 | def getInput():

7 t.goto(x,y)
8 t.stamp()

1 | if __name

11 main()

6 | def markLocation(t,x,y):

== "__main__":

2 x = int(input("Enter x: "))
3 y = int(input("Enter y: "))
4 return (x,y)

CSCl 127 (Hunter)

Lecture 9 March 26, 2024

18 / 36

Challenge:

o Write a function that takes a number as an input and prints its
corresponding name as a string.

o For example,

» num2string(0) returns: "zero"
» num2string(1) returns: "one"
» num2string(2) returns: "two"

o You may assume that only single digits, 0,1,...,9, are given as input.

CSCl 127 (Hunter) Lecture 9 March 26, 2024

19 /36

PythonTutor

o Starter code can be found on GitHub as numsConvert.py

o The pythonTutor link is under week 9 handouts (on course page)
titled “num2string example”

CSCl 127 (Hunter) Lecture 9 March 26, 2024 20 / 36

https://github.com/HunterCSCI127/CSCI127/blob/master/numsConvert.py
https://huntercsci127.github.io/f23.html

Today's Topics

©

Recap: Functions & Top Down Design

©

Mapping GIS Data

©

Random Numbers

©

Indefinite Loops

Q>

=}) = E DQAC
CSCl 127 (Hunter) Lecture 9 March 26, 2024 21 /36

GIS Data

What is GIS data?

o A geographic information system (GIS) consists of integrated
computer hardware and software that store, manage, analyze, edit,
output, and visualize geographic data.

We can use a python library called Folium to access this kind of data and
generate HTML files that display interactive maps when opened in a
browser window.

CSCl 127 (Hunter) Lecture 9 March 26, 2024 22 /36

Folium

UTTENBERG

A
(4

w

v;whﬂ“
g
&
[y
9
_-P'

<

CSCl 127 (Hunter)

Lecture 9

£
Leaflet | (c) OpenStreetMap

[m]

=

A
March 26, 2024

23 /36

Folium

o A module for making HTML maps.

©

It's a Python interface to the popular
leaflet. js.

Folium o Outputs .html files which you can open in a
browser.

o The generated .html files will appear in the
same folder as the program

o Process:
Write — Run — Open .html
code. program. in browser.

CSCl 127 (Hunter) Lecture 9 March 26, 2024 24 / 36

Demo

Leaflet | c) OpenStreetiap

Map created by Folium

CSCl 127 (Hunter)

Lecture 9

o Link to interactive map

March 26, 2024

DA

25 / 36

https://huntercsci127.github.io/files/cunyLocations.html

Folium

0 To use:
import folium
@ Create a map:
Folium myMap = folium.Map()
O Make markers:
newMark = folium.Marker([lat,lon],popup=name)
0 Add to the map:
newMark.add_to (myMap)

@ Save the map to an HTML file:
myMap . save (outfile=filename)

] = =
CSCl 127 (Hunter) Lecture 9 March 26, 2024 26 / 36

Q>

Folium

Example program using Folium:

10

11

12

13

14

p
import folium

#the location parameter is optional
#when supplied, the map will open to the given lat,lon
myMap = folium.Map(location=[40.71, -74.01])

#create a new marker that displays "NYC" at lat,lon
nycMarker = folium.Marker([40.71, -74.01],popup="NYC")

#add the marker to the map
nycMarker.add_to (myMap)

#save the map to an HTML file
myMap . save (outfile="nycMap.html")

-

[m] = = =
CSCl 127 (Hunter) Lecture 9 March 26, 2024

J

YQQ
27 /36

Today's Topics

©

Recap: Functions & Top Down Design

©

Mapping GIS Data

©

Random Numbers

©

Indefinite Loops

=} = = DQAC
CSCl 127 (Hunter) Lecture 9 March 26, 2024 28 / 36

= Q>

Python's random package

o Python has a built-in package for generating
pseudo-random numbers.

o To use:

import random

o Useful command to generate whole numbers:

fimport turtle

iaport: randon random.randrange (start,stop,step)
trey = turtle.Turtle() . .

trey speed(ie) which gives a number chosen randomly from
For L horenoccion: the specified range.

a = random. randrange(®,360,90)
trey.rightCa)

o Useful command to generate real numbers:
random.random()
which gives a number chosen (uniformly) at
random from [0.0,1.0).

o Very useful for simulations, games, and
testing.

CSCl 127 (Hunter) Lecture 9 March 26, 2024 29 / 36

Python's random package

Link to example

g
1 |import turtle

2 |import random

4 |trey = turtle.Turtle()
5 | trey.speed(10)
6 | for i in range(100):

7 trey.forward(10)
8 #Possible values for a: [0, 90, 180, 270]
9 a = random.randrange(0, 360, 90)

10 trey.right(a)

CSCl 127 (Hunter) Lecture 9

March 26, 2024

30 / 36

https://trinket.io/python/ab6cddc880

Today's Topics

©

Recap: Functions & Top Down Design

©

Mapping GIS Data

©

Random Numbers

©

Indefinite Loops

=} = = DQAC
CSCl 127 (Hunter) Lecture 9 March 26, 2024 31/36

= Q>

Challenge:

Predict what the code will do:

1 |dist = int(input("Enter distance: "))

2> | while dist < 0:

3 print ("Distances cannot be negative.")
4 dist = int(input("Enter distance: "))

6 | print ("The distance entered is", dist)
- J

CSCl 127 (Hunter) Lecture 9 March 26, 2024 32/36

Indefinite Loops

©

Indefinite loops repeat as long as the condition is true.

o Could execute the body of the loop zero times, 10 times, infinite
number of times.

©

The condition determines how many times.

©

Very useful for checking input, simulations, and games.

More details next lecture...

©

CSCl 127 (Hunter) Lecture 9 March 26, 2024 33/36

Recap

CSCl 127 (Hunter)

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

Introduced generating random numbers as well as
using while loops for repeating commands for an
indefinite number of times.

Lecture 9 March 26, 2024

34 /36

Halloween Challenge

This program demonstrates the use of while loops and random numbers!

Trick or Treat

CSCl 127 (Hunter) Lecture 9 March 26, 2024 35/ 36

https://github.com/mtlynch3/csci127/blob/main/lecture09/trickortreat.py

Lecture Slips & Writing Boards

o Hand your lecture slip to a UTA.

o Return writing boards as you leave.

CSCl 127 (Hunter)

Lecture 9

DAy
March 26, 2024 36 / 36

