
CSCI 127: Introduction to Computer Science

hunter.cuny.edu/csci

CSCI 127 (Hunter) Lecture 8 March 19 2024 1 / 28



Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Design Challenge

CSCI 127 (Hunter) Lecture 8 March 19 2024 2 / 28



Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Design Challenge

CSCI 127 (Hunter) Lecture 8 March 19 2024 3 / 28



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parenthesis, both
in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters.

Functions can also return
values to where it was called.

CSCI 127 (Hunter) Lecture 8 March 19 2024 4 / 28



Challenge:

What are the formal parameters? What is returned?

CSCI 127 (Hunter) Lecture 8 March 19 2024 5 / 28



dessert.py

� �
1 def enigma(x,y,z):

2 if x == len(y):
3 return(z)
4 elif x < len(y):
5 return(y[x:])
6 else:
7 s = foo(z)

8 return(s+y)� �

CSCI 127 (Hunter) Lecture 8 March 19 2024 6 / 28



dessert.py

� �
9 def foo(w):

10 r = ""

11 for i in range(len(w)-1,-1,-1):
12 r = r + w[i]

13 return(r)
14

15 enigma(7,"caramel","dulce de leche")

16 enigma(3,"cupcake","vanilla")

17 enigma(10,"pie","nomel")� �
CSCI 127 (Hunter) Lecture 8 March 19 2024 7 / 28



Demo: dessert.py

Link to code

CSCI 127 (Hunter) Lecture 8 March 19 2024 8 / 28

https://github.com/mtlynch3/csci127/blob/main/lecture08/desserts.py


Input Parameters

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSCI 127 (Hunter) Lecture 8 March 19 2024 9 / 28



Input Parameters: What about Lists?

When called, the actual parameter values
are copied to the formal parameters.

What is copied with a list?

The address of the list, but not the
individual elements.

The actual parameters do not change, but
the inside elements might.

Easier to see with a demo.

CSCI 127 (Hunter) Lecture 8 March 19 2024 10 / 28



Python Tutor

(Demo with pythonTutor)

CSCI 127 (Hunter) Lecture 8 March 19 2024 11 / 28



Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Design Challenge

CSCI 127 (Hunter) Lecture 8 March 19 2024 12 / 28



Design Question

Design an algorithm that uses NYC Open Data collision data and
computes the closest collision to the location the user provides

See the dataset: Motor Vehicle Collisions - Crashes

CSCI 127 (Hunter) Lecture 8 March 19 2024 13 / 28

https://data.cityofnewyork.us/Public-Safety/Motor-Vehicle-Collisions-Crashes/h9gi-nx95


OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Print the location with the smallest distance.

Let’s use function names as placeholders for the ones we’re unsure...

CSCI 127 (Hunter) Lecture 8 March 19 2024 14 / 28



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData)

import pandas as pd

inF = input("Enter CSV file name:")

2 Ask the user for location

inLat = input("Enter latitude:")

inLon = input("Enter longitude:")

3 Open the CSV file with the crash data

collisions = pd.read csv(inF)

4 Calculate the closet collision to the user

crashLat, crashLon = findClosest(collisions, inLat, inLon)

locationStr = "(" + crashLat + "," + crashLon + ")"

5 Print the location

print("Closest collision at (LAT,LON):", locationStr)

CSCI 127 (Hunter) Lecture 8 March 19 2024 15 / 28



Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Design Challenge

CSCI 127 (Hunter) Lecture 8 March 19 2024 16 / 28



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSCI 127 (Hunter) Lecture 8 March 19 2024 17 / 28



Averaging numpy arrays
Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSCI 127 (Hunter) Lecture 8 March 19 2024 18 / 28



Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Design Challenge

CSCI 127 (Hunter) Lecture 8 March 19 2024 19 / 28



Challenge:

Predict what the code will do:

CSCI 127 (Hunter) Lecture 8 March 19 2024 20 / 28



triangle.py

� �
1 import turtle

2

3 def setUp(t, dist, col):

4 t.penup()

5 t.forward(dist)

6 t.pendown()

7 t.color(col)� �

CSCI 127 (Hunter) Lecture 8 March 19 2024 21 / 28



triangle.py: II

� �
1 def nestedTriangle(t, side):

2 if side > 10:

3 for i in range(3):
4 t.forward(side)

5 t.left(120)

6 nestedTriangle(t, side/2)� �

CSCI 127 (Hunter) Lecture 8 March 19 2024 22 / 28



triangle.py: III

� �
1 def fractalTriangle(t, side):

2 if side > 10:

3 for i in range(3):
4 t.forward(side)

5 t.left(120)

6 fractalTriangle(t, side/2)� �

CSCI 127 (Hunter) Lecture 8 March 19 2024 23 / 28



triangle.py: IV� �
1 def main():

2 side = int(input("Enter side length: "))

3 nessa = turtle.Turtle()

4 setUp(nessa, 100, "violet")

5 nestedTriangle(nessa, side)

6

7 frank = turtle.Turtle()

8 setUp(frank, -100, "red")

9 fractalTriangle(frank, side)

10

11 if __name__ == "__main__":

12 main()� �
CSCI 127 (Hunter) Lecture 8 March 19 2024 24 / 28



Demo

Demo Think CS: 16. Recursion

CSCI 127 (Hunter) Lecture 8 March 19 2024 25 / 28

https://runestone.academy/ns/books/published/thinkcspy/IntroRecursion/toctree.html


Recap

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

CSCI 127 (Hunter) Lecture 8 March 19 2024 26 / 28



Weekly Reminders!

Before next lecture, don’t forget to:

Work on this week’s Online Lab

Schedule an appointment to take the Quiz in lab 1001G Hunter North

If you haven’t already, schedule an appointment to take the Code
Review (once a week) in lab 1001G Hunter North

Submit this week’s 5 programming assignments

If you need help, schedule an appointment for Tutoring in lab 1001G
11:30am-5:30pm

Take the Lecture Preview on Blackboard on Monday (or no later than
10am on Tuesday)

CSCI 127 (Hunter) Lecture 8 March 19 2024 27 / 28



Lecture Slips & Writing Boards

Hand your lecture slip to a UTA.

Return writing boards as you leave.

CSCI 127 (Hunter) Lecture 8 March 19 2024 28 / 28


