ROW:	SEAT:

Mock Final Exam
 CSci 127: Introduction to Computer Science Hunter College, City University of New York

17 May 2022

Exam Rules

- Show all your work. Your grade will be based on the work shown.
- The exam is closed book and closed notes with the exception of an $81 / 2^{\prime \prime} \times 11$ " piece of paper filled with notes, programs, etc.
- When taking the exam, you may have with you pens and pencils, and your note sheet.
- You may not use a computer, calculator, tablet, phone, earbuds, or other electronic device.
- Do not open this exam until instructed to do so.

Hunter College regards acts of academic dishonesty (e.g., plagiarism, cheating on examinations, obtaining unfair advantage, and falsification of records and official documents) as serious offenses against the values of intellectual honesty. The College is committed to enforcing the CUNY Policy on Academic Integrity and will pursue cases of academic dishonesty according to the Hunter College Academic Integrity Procedures.

I understand that all cases of academic dishonesty will be reported to the Dean of Students and will result in sanctions.		
Name:		
EmpID:		

ASCITTABLE

Decimal	Hex	Char									
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	
1	1	[START OF HEADING]	33	21	!	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22	"	66	42	B	98	62	b
3	3	[END OF TEXT]	35	23	\#	67	43	C	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	\%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	\&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	1	72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	A	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	B	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	I
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E	,	78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	o
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	p
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	s
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	y
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	\{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5 C	1	124	7 C	1
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D]	125	7D	\}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	\wedge	126	7E	\sim
31	$1 F$	[UNIT SEPARATOR]	63	3F	?	95	5F	-	127	7F	[DEL]

1. (a) What will the following Python code print:
```
    i. \(\mathrm{a}=\) "Jan\&Feb\&Mar\&Apr\&May\&Jun"
    print(a.count("\&"))
```


Output:

\square

Output:

ii. b = a.split("\&")
print(b[0]) \square

Output:

iii. $\mathrm{mo}=\mathrm{b}[-1] \cdot \operatorname{upper}()$ print(mo) \square

Output:

```
    for c in mo:
iv. print(c.lower())
```

\square
(b) Consider the following shell commands:
\$ ls -l
-rw-r--r--@ 1 ligorio staff 5308 Mar 21 14:38 quizzes.html
-rw-r--r-- 1 ligorio staff 413 Apr 20 18:57 zoneDist.csv
-rw-r--r--@ 1 ligorio staff 519 Apr 22 15:14 zoneMap.py
-rw-r--r-- 1 ligorio staff 16455174 Mar 20 19:02 zoning2.html
-rw-r--r-- 1 ligorio staff 17343896 Mar 20 18:58 zoningIDS.json
i. What is the output for:
\$ ls *zz*
Output:
\square
ii. What is the output for:

```
$ ls -l | grep "Apr"
```


Output:

\square

Output:

2. (a) For each row below containing a binary, decimal, and hexadecimal number, circle the largest value in the row (or "All Equal" if all three entries have the same value):

	Binary:	Decimal:	Hexadecimal:	All Equal
a)	10	2	2	All Equal
b)	1100	12	C	All Equal
c)	10010	18	12	All Equal
d)	100000	34	19	All Equal
e)	1111110	250	FE	All Equal

(b) Fill in the code below to make an image in which a pixel is white if it has an entry of 0 in the array elevations. Otherwise, the pixel should be colored green.

```
# Takes elevation data of NYC and displays coastlines
import numpy as np
import matplotlib.pyplot as plt
elevations = np.loadtxt('elevationsNYC.txt')
#Base image size on shape (dimensions) of the elevations:
mapShape = elevations.shape + (3,)
floodMap = np.zeros(mapShape)
for row in range(mapShape[0]):
    for col in range(mapShape[1]):
```

\#Save the image:
plt.imsave('floodMap.png', floodMap)
3. (a) What is the value (True/False):
in1 = True
i. in2 = False \square
out $=$ (not in1) and (not in2)

```
in1 = False
```

ii. in2 = True \square
out $=$ (not in1 or in2) and (not in2 or in1)
in1 $=$ not False
iii. $\begin{aligned} & \text { in2 }=\text { not False or False } \\ & \text { in3 }=\text { not in1 or not in2 }\end{aligned}$
out $=\square$ out $=$ not in2 and not in3

iv.

$$
\begin{aligned}
& \text { in1 }=\text { False } \\
& \text { in2 }=\text { True } \\
& \text { in3 }=\text { False }
\end{aligned}
$$

(b) Design a circuit that implements the logical expression:
(not (in1 or in2) and (not in2)) or (((in2 and not in3) or in3) and not in3)
4. (a) Draw the output for the function calls:

```
import turtle
def mystery1(tess, x, y):
    for i in range(2):
        tess.forward(x)
        tess.left(90)
        tess.forward(y)
        tess.left(90)
def mystery2(tina, s):
    mystery1(tina, s, s)
taj = turtle.Turtle()
```

(b) Given the function definitions:

```
```

def enigma(n):

```
```

def enigma(n):
for i in range(1,n+1):
for i in range(1,n+1):
help(i)
help(i)
print()

```
```

 print()
    ```
```

i. What is the output for enigma(5)?
\qquad
i. mystery1(taj, 100, 20)

ii. mystery2(taj, 100)


```
def help(x):
    for j in range(x):
        print(( }\textrm{x}+\textrm{j})*2,\mathrm{ end=' ')
```

5. Design an algorithm that asks the user for the name of a text file containing a grid of numbers and loads it into a 2D array of integers (think like an image without the color channel), then outputs the index (row, col) of the SMALLEST number in the array.

Design Pattern:Search
\square Find MinFind MaxFind All

Principal Mechanisms (select all that apply):
\square Single Loop
\square Nested Loop
\square Conditional (if/else) statementIndexing / Slicing \square split()input()

Process (as a concise and precise LIST OF STEPS / pseudocode):
(Assume libraries have already been imported.)
6. Write a complete Python program that asks the user for the name of a .png (image) file and displays the upper right quarter of the image.
For example if the image is hunterLogo.png (left), the displayed image would be (right):

$\square \square \square$ The City University of New York
7. Fill in the following functions that are part of a program that maps GIS data from NYC OpenData CSV files:

- getData(): asks the user for the name of the CSV and returns a DataFrame of the contents.
- getLocale(): asks the user for latitude and longitude of the user's current location and returns those floating points numbers, and
- computeDist(): computes the squared distance between two points (x1,y1) and (x2,y2):

$$
(x 1-x 2)^{2}+(y 1-y 2)^{2}
$$

```
import pandas as pd
def getData():
    \| \| \|
    Asks the user for the name of the CSV and
    Returns a dataframe of the contents.
    """
```

\square
def getLocale():
"" "
Asks the user for latitude and longitude of the user's current location and
Returns those floating points numbers.
"""
\square
def computeDist($\mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2, \mathrm{y} 2$) :
"" "
Computes the squared distance between two points ($\mathrm{x} 1, \mathrm{y} 1$) and ($\mathrm{x} 2, \mathrm{y} 2$) and
Returns (x1-x2) ^2 + (y1-y2) ^2
"""
\square
8. (a) What is printed by the MIPS program below:

Output:

(b) Modify the program to print out 99 copies of the character '!'. Shade in the box for each line that needs to be changed and rewrite the instruction below.ADDI \$sp, \$sp, -6 \# Set up stackADDI \$s3, \$zero, 1 \# Store 1 in a registerADDI \$t0, \$zero, 33 \# Set \$t0 at 33 (!)ADDI \$s2, \$zero, 5 \# Use to test when you reach 5SETUP: SB \$t0, $0(\$ \mathrm{sp})$ \# Next letter in \$t0ADDI \$sp, \$sp, 1
\# Increment the stackSUB \$s2, \$s2, \$s3
\# Decrease the counter by 1BEQ \$s2, \$zero, DONE \# Jump to done if \$s0 == 0J SETUP
\# If not, jump back to SETUP for loopDONE: ADDI \$t0, \$zero, 0 \# Null (0) to terminate stringSB \$t0, $0(\$ \mathrm{sp})$
\# Add null to stackADDI \$sp, \$sp, -5
\# Set up stack to printADDI \$v0, \$zero, 4
\# 4 is for print stringADDI \$a0, \$sp, 0
\# Set \$a0 to stack pointer for printingsyscall
\# Print to the log
9. Fill in the $\mathrm{C}++$ programs below to produce the Output on the right.

```
    #include <iostream>
using namespace std;
int main()
{
    for(int i = 0; i <=30; प){ {
        cout << i*2 << endl;
    }
    return 0;
}
#include <iostream>
using namespace std;
int main()
{
    int count = 5;
    int num = 2;
```

```
    while(count प\&& num प){
```

 while(count प\&& num प){
 cout << count << " " << num << endl;
 cout << count << " " << num << endl;
 count -=1;
 count -=1;
 if(count % 2 == 0)
 if(count % 2 == 0)
 num -=1;
 num -=1;
 }
 }
 return 0;
 return 0;
 }
    ```
    }
```


Output:

0
20
40
60

Output:

52
41
31
20
10

```
Output:
```

(a)
(b)
\#include <iostream>
using namespace std;
int main()\{
(c)
for (int $i=5$; \square; $i--$) $\{$
cout << "Still counting!" << endl;
\}
return 0;
\}

Still counting!
10. (a) Translate the following program into a complete $C++$ program:

```
#Python Loops, V3:
for i in range(0,50,5):
    print(i)
```

(b) Write a complete $\mathbf{C}++$ program to compute the ticket price to enter the Museum of Natural History. Your program must ask the user for their age and print "Child: $\$ 12.50$ " if the age entered is 12 or less, "Adult: $\$ 22.00$ " if the age entered is less than 65 , and "Senior: $\$ 17.00$ " otherwise.

