Mock Final Exam
CSci 127: Introduction to Computer Science
Hunter College, City University of New York

10 December 2019

Answer Key:

1. (a) What will the following Python code print:

 pioneers="Asimov%Isaac#Shelley%Mary#Gibson%William"
 num = pioneers.count('%')
 i. num = num + pioneers.count('#') + 2
 print(pioneers[len(pioneers)-num:].lower())

 Answer Key:
 william

 names = pioneers.split('#')
 m = names[1]
 ii. print(m[-4]+'. '+m[:7])

 Answer Key:
 M. Shelley

 iii. for n in names:
 print(n.split('%')[0][0])

 Answer Key:
 A
 S
 G

(b) Consider the following shell commands:
$ pwd
/Users/login/temp
$ ls
csBridge.png Elevations.csv p25.py p27.py

i. What is the output for:
$ mkdir hwk
$ mv *.p* hwk
$ ls

Answer Key:
Elevations.csv hwk

ii. What is the output for:
$ cd hwk
$ ls | grep ^p | wc -l

Answer Key:
2

iii. What is the output for:
$ pwd
$ cd ../
$ pwd

Answer Key:
/Users/login/csci127/hwk
/Users/login/csci127

2. (a) Consider the code:

Answer Key:

```python
import turtle
thomasH = turtle.Turtle()
```

i. After the command: `thomasH.color("#1B1B1B")`, what color is `thomasH`?
□ black □ red □ white X gray □ teal

ii. After the command: `thomasH.color("#00AAAA")`, what color is `thomasH`?
□ black □ red □ white □ gray X teal

iii. Fill in the code below to change `thomasH` to be the color white:
`thomasH.color("#" F F F F F F)
```
iv. Fill in the code below to change \texttt{thomasH} to be the brightest purple:
\begin{verbatim}
thomasH.color("#FFFFFF")
\end{verbatim}

(b) Fill in the code to produce the output on the right:

\begin{itemize}
  \item[i.] Answer Key:
  \begin{verbatim}
  for i in range(10):
    print(i, end=" ")
  \end{verbatim}
  \begin{tabular}{c}
  Output:
  \end{tabular}
  \begin{verbatim}
  0 1 2 3 4 5 6 7 8 9
  \end{verbatim}

  \item[ii.] Answer Key:
  \begin{verbatim}
  for j in range(-2, 8, 2):
    print(i, end=" ")
  \end{verbatim}
  \begin{tabular}{c}
  Output:
  \end{tabular}
  \begin{verbatim}
  -2 0 2 4 6
  \end{verbatim}

  \item[iii.] Answer Key:
  \begin{verbatim}
  import numpy as np
  import matplotlib.pyplot as plt
  im = np.ones((10,10,3))
  im[:,2:5,:] = 0
  plt.imshow(im)
  plt.show()
  \end{verbatim}
  \begin{tabular}{c}
  Output:
  \end{tabular}

  \item[iv.] Answer Key:
  \begin{verbatim}
  import numpy as np
  import matplotlib.pyplot as plt
  im = np.ones((10,10,3))
  im[0::2,2::3,:] = 0
  plt.imshow(im)
  plt.show()
  \end{verbatim}

3. (a) What is the value (True/False):
\begin{itemize}
  \item[i.] in1 = False
  \item[ii.] in2 = True
  \end{itemize}

  \begin{tabular}{c}
  Answer Key:
  \end{tabular}
  \begin{verbatim}
  out = in1 or in2
  \end{verbatim}

  \begin{tabular}{c}
  Output:
  \end{tabular}
  \begin{verbatim}
  True
  \end{verbatim}
in1 = True

ii. in2 = True
out = not in1 or (in2 and not in2)

Answer Key:
out = False

in1 = True

iii. in2 = True or not in1
in3 = in1 or in2
out = in1 and not in3

Answer Key:
out = False

iv. in3
in1 = True
in2 = False
in3 = False

Answer Key:
out = True

(b) Draw a circuit that implements the logical expression:

\(((\text{in1 or in2}) \text{ and } \text{not in2})\)

Answer Key:

(c) Fill in the circuit that implements the logical expression:

\(((\text{in1 or (in1 and not in2}) \text{ and } \text{in3 or not in3})\)

Answer Key:
4. (a) Draw the output for the function calls:

i. `ramble(tess, 8)`

Answer Key:

```
1: def ramble(t, len):
2: if len <= 10:
3: t.stamp()
4: elif len%2 == 0:
5: t.left(90)
6: t.forward(len)
7: ramble(t, len//2)
8: else:
9: t.right(90)
10: t.forward(len)
11: ramble(t, len//2)
```

ii. `ramble(tess, 180)`

Answer Key:

(b) What are the formal parameters for `ramble()`:

Answer Key: `t, len`
(c) If you call `ramble(tess, 8)`, which branches of the function are tested (check all that apply):

**Answer Key:**
- X The block of code at Line 6.
- □ The block of code at Lines 8-10.
- □ The block of code at Lines 12-14.
- □ None of these blocks of code (lines 6, 8-10, 12-14) are visited from this invocation (call).

(d) If you call `ramble(tess, 180)`, which branches of the function are tested:

**Answer Key:**
- □ The block of code at Line 6.
- X The block of code at Lines 8-10.
- X The block of code at Lines 12-14.
- □ None of these blocks of code (lines 6, 8-10, 12-14) are visited from this invocation (call).

Consider the driving times from Hunter College to LaGuardia Airport using the different routes which factors in delays due to traffic (x cars) already en route:

- \( T_{RFK}(x) = 14 + \frac{x}{10,000} \), the time, in minutes, for the Triborough/RFK bridge route.
- \( T_{KQB}(x) = 18 + \frac{x}{5,000} \), the time, in minutes, for the Koch Queensboro bridge route.
- \( T_{Tun}(x) = 16 + \frac{x}{1,000} \), the time, in minutes, for the Queens Midtown Tunnel route.

Design an algorithm that, given the current status of traffic at any given moment, suggests the best route.

- **Input:**

  **Answer Key:** The number of cars currently on each route

- **Output:**

  **Answer Key:** The suggested route

- **Process (as a list of steps):**

  **Answer Key:** There are several different ways to approach this. A selfish routing approach will always suggest the current fastest route. A distributed approach would consider how many other cars are currently being routed in the same direction:
(a) Ask for the number of cars currently on each route
(b) Compute the driving times along each of the three routes given the number of cars currently on each.
(c) Distribute the currently requesting cars along the three routes taking into account the computed driving times
(d) Output the suggested route

6. Given the YouTube dataset of top-trending videos in 2017, a snapshot given in the image below:

<table>
<thead>
<tr>
<th>video_id</th>
<th>trending_date</th>
<th>title</th>
<th>channel_title</th>
<th>publish_time</th>
<th>views</th>
<th>likes</th>
<th>dislikes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2ky56SvSYSE</td>
<td>17.14.11</td>
<td>WE WANT T Casey Neistat</td>
<td>2017-11-12T17:13:31</td>
<td>748374</td>
<td>57527</td>
<td>2966</td>
<td></td>
</tr>
<tr>
<td>t2APrfrAFY</td>
<td>17.14.11</td>
<td>The Trump F LastWeekTonight</td>
<td>2017-11-13T07:30:01</td>
<td>2418783</td>
<td>97185</td>
<td>6146</td>
<td></td>
</tr>
<tr>
<td>5qpdKSDgCt4</td>
<td>17.14.11</td>
<td>Nicki Minaj Super Rudy Mancuso</td>
<td>2017-11-12T19:05:21</td>
<td>3191434</td>
<td>146033</td>
<td>5339</td>
<td></td>
</tr>
<tr>
<td>puq4WEC7iY</td>
<td>17.14.11</td>
<td>Nickelback I Good Mythical M</td>
<td>2017-11-13T11:00:00</td>
<td>343168</td>
<td>10172</td>
<td>666</td>
<td></td>
</tr>
<tr>
<td>d380meD0W0M</td>
<td>17.14.11</td>
<td>I Dare You: C nigahiga</td>
<td>2017-11-12T18:01:41</td>
<td>2095731</td>
<td>132235</td>
<td>1999</td>
<td></td>
</tr>
<tr>
<td>gHZ1Qz0KKM</td>
<td>17.14.11</td>
<td>2 Weeks with Sublime</td>
<td>2017-11-13T19:07:22</td>
<td>119180</td>
<td>9763</td>
<td>511</td>
<td></td>
</tr>
<tr>
<td>3kivVpFF7NQ</td>
<td>17.14.11</td>
<td>Roy Moore &amp; Saturday Night Live</td>
<td>2017-11-12T05:37:11</td>
<td>2103417</td>
<td>15993</td>
<td>2445</td>
<td></td>
</tr>
<tr>
<td>nc99ccS5X0T0</td>
<td>17.14.11</td>
<td>S Ice Cream CrazyRussianHair</td>
<td>2017-11-12T21:50:31</td>
<td>817732</td>
<td>23663</td>
<td>778</td>
<td></td>
</tr>
<tr>
<td>jR4QrS0Ce0c</td>
<td>17.14.11</td>
<td>The Greatest 20th Century Fox</td>
<td>2017-11-13T14:00:02</td>
<td>826059</td>
<td>3543</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>TUmynyCMMGA</td>
<td>17.14.11</td>
<td>Why the rise Vox</td>
<td>2017-11-13T13:45:1f</td>
<td>256426</td>
<td>12654</td>
<td>1363</td>
<td></td>
</tr>
</tbody>
</table>

Fill in the Python program below:

**Answer Key:**

```python
#P6, Mock: extracts data about indifferent views and about videos
#with highest number of likes

Import the libraries for data frames and plotting data:
import pandas as pd
import matplotlib.pyplot as plt

Prompt user for input file name:
csvFile = input('Enter CSV file name: ')

Read input data into data frame:
youtube = pd.read_csv(csvFile)

Calculate a new column for the number of indifferent views
youtube['indifferent'] = youtube['views'] - (youtube['likes'] + youtube['dislikes'])

Print the maximum number of indifferent views on a video
print(youtube['indifferent'].max())

Group videos by channel to find out the maximum number of likes on each channel
channelLikes = youtube.groupby(['channel_title'])['likes'].max()
```
#Print the top 5 channels with largest number of likes
print(channelLikes[:5])

7. Write a **complete Python program** that prompts the user for the name of an .png (image) file and prints the fraction of pixels that are grayscale, or a shade of gray. Recall that a pixel is a shade of gray if the red, green, and blue values are all equal.

**Answer Key:**

```python
#Import the packages for images and arrays:
import matplotlib.pyplot as plt
import numpy as np

#Ask user for image name and read into img:
inImg = input('Enter input image: ')
img = plt.imread(inImg)

#Get height and width:
height = img.shape[0]
width = img.shape[1]

#Initialize counter:
count = 0

#Loop through all the pixels:
for row in range(height):
 for col in range(width):
 #Check if the red, green, and blue values are equal for each pixel and update count:
 if img[row,col,0] == img[row,col,1] == img[row,col,2]:
 count = count + 1

#Compute and print fraction:
frac = count/(height*width)
print('Fraction gray is', frac)
```

8. (a) What does the following MIPS program print:

**Answer Key:**

KMOQS

(b) Modify the program to print out 10 consecutive letters starting with 'K'. Shade in the box for each line that needs to be changed and rewrite the instruction in the space below.

**Answer Key:**
#Loop through characters
ADDI $sp, $sp, -11  # Set up stack
ADDI $t0, $zero, 75  # Start $t0 at 75 (K)
ADDI $s2, $zero, 85  # Use to test when you reach 85 (T)
SETUP: SB $t0, 0($sp)  # Next letter in $t0
ADDI $sp, $sp, 1  # Increment the stack
ADDI $t0, $t0, 1  # Increase the letter by 1
BEQ $t0, $s2, DONE  # Jump to done if $t0 == 85
J SETUP  # If not, jump back to SETUP for loop
DONE: ADDI $t0, $zero, 0  # Null (0) to terminate string
SB $t0, 0($sp)  # Add null to stack
ADDI $sp, $sp, -11  # Set up stack to print
ADDI $v0, $zero, 4  # 4 is for print string
ADDI $a0, $sp, 0  # Set $a0 to stack pointer for printing
syscall  # Print to the log

9. What is the output of the following C++ programs?

```cpp
//Quote by Mary Shelley
#include <iostream>
using namespace std;

int main()
{
 cout<<"Invention,\nit must be ";
 cout<<"humbly admitted,\ndoes not ";
 cout<<"consist in ";
 cout<<"creating"<<endl<<"out of ";
 cout<<"void,\nbu but out of chaos. ";
 cout<<"M.S.";
 return 0;
}
```

**Answer Key:**

Invention,  
it must be humbly admitted,  
does not consist in creating  
out of void,  
but out of chaos. M.S.
```cpp
#include <iostream>
using namespace std;

int main()
{
 double tot = 0;
 cout << "Please enter amount\n";
 cin >> tot;

 while (tot > 100) {
 tot = tot - (tot * 0.5);
 cout << tot << endl;
 }
 cout << tot << endl;
 return 0;
}
```

**Answer Key:**

Please enter amount
200

```cpp
#include <iostream>
using namespace std;

int main(){
 int i, j;
 for (i = 1; i < 6; i++){
 for (j = 1; j < 6; j++){
 if(j % 2 == 1)
 cout << i;
 else
 cout << j;
 }
 cout << endl;
 }
 return 0;
}
```

**Answer Key:**

12141
22242
32343
42444
52545

10. Write a **complete C++ program** that repeatedly asks the user for their score on a programming assignment until the entered score is a negative number. The program then **prints the average programming assignment score**. The negative number simply indicates that the user has finished entering scores and it is not included in the average.

**Answer Key:**
```cpp
#include <iostream>
using namespace std;
int main()
{
 double score = 0, total_score = 0, toal_assignments = 0;

 while(score >= 0)
 {
 cout << "Please enter your score on a programming assignment: ";
 cin >> score;
 if(score >= 0)
 {
 total_score += score;
 toal_assignments++;
 }
 }

 cout << "Your average programming assignment score is " << total_score / toal_assignments << endl;
 return 0;
}
```