Answer Key:

FINAL EXAM, VERSION 2 CSci 127: Introduction to Computer Science Hunter College, City University of New York

23 May 2022

1. (a) Fill in the code below to produce the Output on the right:

```
workdays = "Monday?Tuesday?Wednesday?Thursday?"
summer_months = "*June*July*August*"
long_weekend = "Friday_Saturday_Sunday"
seasons = "+Spring+Summer+Fall+Winter"
 i.
                             ٦.
   print(
                                                  ])
   Answer Key:
   print(summer_months[1:5], workdays[-9:-1])
ii. months = summer_months[
                                    ].split(
   print("Summer has" , len(
                                       ). "months.")
   Answer Key:
   months = summer_months[1:-1].split('*')
   print("Summer has", len(months), "months.")
iii.
   for m in
       print(
                                )
   Answer Key:
          for m in months:
                print(m.lower())
```

(b) Consider the following shell commands:

 \Box purple

X 0000

```
$ ls
       hello.py pictures
                                 pp_hello.cpp
                                                    temp
         i. What is the output for:
            $ mv hello.py
                              p1.py
            $ ls
            Answer Key:
            p1.py
                     pictures
                                   pp_hello.cpp
                                                       temp
         ii. What is the output for:
            $ mkdir python
            $ mv *.py python
            $ ls
            Answer Key:
            python pictures pp_hello.cpp temp
        iii. What is the output for:
            $ cd python
            $ mkdir p50_60
            $ mkdir py_5
            $ ls | grep py
            Answer Key:
            p1.py
                     py_5
2. (a) Select the correct option.
       Answer Key:
         i. What color is tina? tina.color(0.5,0.5,0.5)
            \Box black
                            \Box red
                                           \Box white
                                                           X gray
         ii. Select the SMALLEST Binary number:
            \Box 0110
                           \Box 1001
                                           \Box 1101
                                                           \Box 1011
        iii. Select the LARGEST Hexadecimal number:
            \Box 0A
                          \Box 22
                                       \Box A0
                                                     \mathbf{X} \ \mathrm{FF}
                                                                    \Box CD
        iv. What is the decimal number equivalent to binary 10110?
                         \Box 25
                                       \Box 24
                                                     X 22
            \Box 16
                                                                  \Box 18
```

v. What is the decimal number equivalent to hexadecimal 18?

3.

	X 24	\Box 19	$\Box 28$	\Box 13	\Box 23	
(b) Fill	in the code	to produce t	the Output on the	ne right:		
num	us = [23,	45, 76, 23	, 98, 45 , 11,	4,33,29	9, 5, 66]	
i.	Answer K for i in print(num	<pre>Cey: range(5,11 s[i], end="</pre>		Output: 45 11 4 33 29	5	
ii.	Answer K for j in print(r	Cey: range(0,11 uums[j], end	Output: 23 23 11 29			
	Answer	Key:	Output:			
iii.	<pre>import n import m img = np -1 img[img[plt.imsh plt.show</pre>	umpy as np atplotlib.p .ones((11,], : , 5 , ow(im) ()	<pre>yplot as plt 11,3)) :] = 0 :] = 0</pre>			6 8 10
(a) Wh i.	int is the val in1 = Tru in2 = Tru out = (n Answer K	lue (True/Fal e e ot in1 and Key:	se): in2) or (not	in1 and in	2)	
ii.	<pre>out = Fal in1 = Fal in2 = Fal in3 = (n out = (no Answer K out = Tru</pre>	se se ot in1) or t in1 or no Cey: e	(not in2) t in2) and (n	ot in2 or	in3)	
	out = Tru	e				

(b) Draw a circuit that implements the logical expression:

(not in1 or in2) and not((not in2 and in3) or not in3)

4. Consider the following functions:

```
def woof(i, 1):
    for j in range(i):
        for i in range(1,n):
        woof(i, ch)
        print()
        def main():
            meow(6, 'X')
```

(a) What are the formal parameters for meow()?

Answer Key: n, ch

(b) What are the actual parameters for woof()?

Answer Key: i, ch

(c) How many calls are made to woof() after calling main()?

Answer Key: 5

(d) What is the output after calling main()?

Output:

Answer Key: X XX XXX XXX XXXX XXXX

5. Design an algorithm that asks the user for the name of a csv file and the name of a column, then returns the number values in that column that repeat more than once. For example, if the column contains values [a, b, b, a, c, c, c, d, e, f], the program returns 3, because a, b and c are repeated, while d, e and f occur only once. You must write detailed **pseudocode** as a precise list of steps that completely and precisely describe the algorithm.

Libraries (if any):

Answer Key: pandas Input:

Answer Key: The file name and the column name Output:

Answer Key: An integer, the number of values that repeat more than once in the column

Principal Mechanisms (select all that apply):

Answer Key: \Box Search	X Single Lo	op \Box Nested Loop	\mathbf{X} Conditional
(if/else) statement			
XIndexing / Slicing	□ split()	Xinput()	

Process (as a concise and precise LIST OF STEPS / pseudocode):

(Assume libraries, if any, have already been imported.)

Answer Key:

- (a) Ask the user for the name of a csv file
- (b) Ask the user for the name of a column in that csv file
- (c) Read the csv file into a dataframe
- (d) Use value_counts() to count the number of occurrences for each value in that column and assign it to a variable, say count_list
- (e) start a counter at 0
- (f) Loop for every value in count_list and increment the counter if that value is >1
- (g) Output the count
- (h) ALTERNATIVELY: Output: len(count_list[count_list > 1])
- 6. Consider apple_stocks.csv from the Apple Stock Price dataset from kaggle, reporting Apple's stock prices (in USD \$) from December 1980 to May 2022. Each row in the dataset corresponds to the stock values for one day of trading. A snapshot of the data is given in the image below:

Date	Open	High	Low	Close	Volume				
1980-12-12	0.128348	0.128906	0.128348	0.128348	469033600				
1980-12-15	0.122210	0.122210	0.121652	0.121652	175884800				
1980-12-16	0.113281	0.113281	0.112723	0.112723	105728000				
1980-12-17	0.115513	0.116071	0.115513	0.115513	86441600				
2022-04-28	159.2500	164.5200	158.9299	163.6399	130216800				
2022-04-29	161.83999	166.1999	157.2500	157.64999	131587100				
2022-05-02	156.7100	158.2299	153.2700	157.9600	123055300				

Fill in the Python program below:

Answer Key:

```
#Import the libraries for plotting and data frames
import pandas as pd
import matplotlib.pyplot as plt
#Prompt user for input file name:
in_file = input("Please enter the name of the Apple stocks csv file: ")
```

```
#Read input data into data frame:
apple = pd.read_csv(in_file)
#Print the highest opening value
print(apple["Open"].max())
#Print the average closing value
print(apple["Close"].mean())
#Print the difference between the last (2022-05-02) and first (1980-12-12) High values
print(apple["High"][len(apple)-1] - apple["High"][0])
#Plot the closing values against the date
apple.plot(x="Date", y="Close")
plt.show()
```

7. Fill in the following functions that are part of a program that maps GIS data :

- getData(): asks the user for latitude and longitude of the user's current location and returns those as floating points numbers
- mark(): creates and returns a folium marker at coordinates lat, lon
- saveMap(): adds mark to a map and saves it with name "my_map.html"

```
Answer Key:
```

```
import folium
def getData():
     .....
     Asks the user for latitude and longitude of the user's current location
     Returns lat, lon as floating points numbers
     .....
     lat = float(input('Enter current latitude: '))
     lon = float(input('Enter current longitude: '))
     return(lat, lon)
def mark(lat, lon):
     .....
     Creates and returns a folium marker at coordinates lat, lon
     .....
     return folium.Marker(location = [lat, lon])
def saveMap(mark):
     .....
     Adds mark to a map and saves it with name "my_map.html"
```

```
"""
map = folium.Map()
mark.add_to(map)
map.save(outfile="my_map.html")
```

8. (a) What is printed by the MIPS program below:

Answer Key:

(b) Modify the program to print out "ADGJ". Shade in the box for each line that needs to be changed and rewrite the instruction below, or add instructions where necessary.

Answer Key:

```
#Loop through characters
ADDI $sp, $sp, -5
                       # Set up stack
ADDI $s3, $zero, 1
                        # Store 1 in a register
ADDI $t0, $zero, 65
                         # Set $t0 at 65 (A)
ADDI $s2, $zero, 5
                        # Use to test when you reach 5
SETUP: SB $t0, 0($sp)
                         # Next letter in $t0
ADDI $sp, $sp, 1
                         # Increment the stack
ADDI $s3, $s3, 1
                         # Increment the counter by 1
ADDI $t0, $t0, 3
                         # Increment the letter (added instruction)
BEQ $s3, $s2, DONE
                         # Jump to done if $s3 == 5
J SETUP
                         # If not, jump back to SETUP for loop
DONE: ADDI $t0, $zero, 0 # Null (0) to terminate string
SB $t0, 0($sp)
                         # Add null to stack
ADDI $sp, $sp, -4
                       # Set up stack to print
ADDI $v0, $zero, 4
                         # 4 is for print string
ADDI $a0, $sp, 0
                         # Set $a0 to stack pointer for printing
syscall
                         # Print to the log
```

9. Fill in the C++ programs below to produce the Output on the right.

```
#include <iostream>
using namespace std;
int main()
{
    (a) for( ; i <=35; ){
        cout << i+3 << endl;
      }
      return 0;
}</pre>
```

```
Answer Key:
```

```
for( int i = 2; i <=35; i +=5)
#include <iostream>
using namespace std;
int main()
{
    int n=-14, m=10;
```

```
(b) while(n+m ){
    cout << n << " " << m << endl;
    n+=2;
    m--;
    }
    return 0;
}</pre>
```

Answer Key:

while(n+m < -1)

```
#include <iostream>
   using namespace std;
   int main(){
                                       ){
   for (
   Answer Key:
   for(int i = 2; i < 8; i++)</pre>
(c)
                                           ){
        for(
   Answer Key:
   for(int j = 10; j >= i; j--)
                cout << i << j-i << " ";
            }
            cout << endl;</pre>
        }
       return 0;
   }
```

10. (a) Write a **complete C++ program** that repeatedly asks the user for two amounts until their sum is positive, then it outputs the sum:

Answer Key:

```
#include <iostream>
using namespace std;
int main()
{
    float amount1=0.0, amount2=0.0;
    do{
        cout << "Please enter an amount: ";
        cin >> amount1;
        cout << "Please enter another amount: ";
        cin >> amount2;
    }while(amount1+amount2<1);
    cout << "The sum is " << amount1+amount2 << endl;
    return 0;
}</pre>
```

(b) Write a complete C++ program that asks the user for an amount and computes the

number of years it takes to double the amount, if it is subject to an increase of 25% each year.

Answer Key:

```
#include <iostream>
using namespace std;
int main()
{
   float amount = 0.0;
   int year = 0;
   cout << "Please enter an mount: ";
   cin >> amount;
   int doubled_amount = amount*2;
   while(amount < doubled_amount){
      amount += amount*0.25;
      year +=1;
      cout << year << " " << amount << endl;
   }
}</pre>
```

cout << "It took " << year << " years to double your amount to " << amount << end return 0;

}

SCRATCH PAPER (page left intentionally blank)

SCRATCH PAPER (page left intentionally blank)