Row:	SEAT:

Final Exam, Version 1
 CSci 127: Introduction to Computer Science Hunter College, City University of New York

20 May 2022

Exam Rules

- Show all your work. Your grade will be based on the work shown.
- The exam is closed book and closed notes with the exception of an $81 / 2^{\prime \prime} \times 11$ " piece of paper filled with notes, programs, etc.
- When taking the exam, you may have with you pens and pencils, and your note sheet.
- You may not use a computer, calculator, tablet, phone, earbuds, or other electronic device.
- Do not open this exam until instructed to do so.

Hunter College regards acts of academic dishonesty (e.g., plagiarism, cheating on examinations, obtaining unfair advantage, and falsification of records and official documents) as serious offenses against the values of intellectual honesty. The College is committed to enforcing the CUNY Policy on Academic Integrity and will pursue cases of academic dishonesty according to the Hunter College Academic Integrity Procedures.

I understand that all cases of academic dishonesty will be reported to the Dean of Students and will result in sanctions.	
Name:	
EmpID:	

ASCITTABLE

Decimal	Hex	Char									
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	
1	1	[START OF HEADING]	33	21	!	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22	"	66	42	B	98	62	b
3	3	[END OF TEXT]	35	23	\#	67	43	C	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	\%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	\&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	1	72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	A	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	B	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	I
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E	,	78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	o
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	p
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	s
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	y
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	\{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5 C	1	124	7 C	1
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D]	125	7D	\}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	\wedge	126	7E	\sim
31	$1 F$	[UNIT SEPARATOR]	63	3F	?	95	5F	-	127	7F	[DEL]

1. (a) Fill in the code below to produce the Output on the right:
```
workdays = "Monday?Tuesday?Wednesday?Thursday?"
summer_months = "*June*July*August*"
long_weekend = "Friday_Saturday_Sunday"
seasons = "+Spring+Summer+Fall+Winter"
```

Output:
Sunday Monday
ii.

Output:

Our week has 4 days.

Output:
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
(b) Consider the following shell commands:
\$ ls
hello.cpp pictures pp_hello.py temp
i. What is the output for:
\$ mv hello.cpp p1.cpp
\$ ls
Output:
\square
ii. What is the output for:

```
$ mkdir c++
$ mv *.cpp c++
$ ls
```


Output:

Output:

```
$ cd c++
$ mkdir p50_60
$ mkdir pp_5
$ ls | grep pp
```

\square
2. (a) Select the correct option.
i. What color is tina after this command? tina.color ($0.0,0.0,0.0$)black
\square redwhitegray
purple
ii. Select the LARGEST Binary number:0110
100111011011
0000
iii. Select the SMALLEST Hexadecimal number:0A
22A0
FFCD
iv. What is the Binary number equivalent to decimal 22 ?11010
01110
10110

0001110101
v. What is the Hexadecimal number equivalent to decimal 20 ?
$\square 14$A1F0
1 F
(b) Fill in the code to produce the Output on the right:

```
nums = [ 23, 45, 76, 23, 98, 45, 11, 4, 33, 29, 5, 66]
```

i. for i in range \square, \square):

Output:

762398
print(nums[i], end=" ")
ii. for j in range (\square,

\square) : print (nums[j], end=" ")

Output:

4523454

```
import numpy as np
import matplotlib.pyplot as plt
img = np.ones( (11,11,3) )
```

iii.
 , :] = 0 \# black row

Output:

3. (a) What is the value (True/False):

```
    in1 = False
    i. in2 = True
```

```
    out \(=\) not (in1 and in2) and (not in1 and in2)
    in1 = False
    in2 \(=\) True
    in3 \(=\) not ( not in1 or not in2 )
    out \(=\) (not in1 or not in2) and not (in2 or in3)
```

```False
```

ii.
\square True
iii.

in1 = True
in2 $=$ True
in3 $=$ FalseTrueFalse
(b) Draw a circuit that implements the logical expression:
(not in1 or in2) and not(not(in2 and in3) or in3)
4. Consider the following functions:
def jig(n, m):
for i in range(n):
if(i \% $3==0$):
print(saw(i, m))

```
```

```
def saw(i, m):
```

```
def saw(i, m):
    for j in range(i):
    for j in range(i):
        m+=1
        m+=1
    return m
    return m
```

def main():

```
def main():
    jig(10, 5)
```

 jig(10, 5)
    ```
(a) What are the formal parameters for saw()?
(b) What are the actual parameters for jig?
\(\square\)
\(\square\)
(c) How many calls are made to saw() after calling main()?
\(\square\)
(d) What is the output after calling main()?

\section*{Output:}
5. A palindrome is a string (word or sentence, e.g. "madam" or "nurses run") that reads the same backward as forward. Design an algorithm that reads a string and outputs whether it is a palindrome or not. You must write detailed pseudocode as a precise list of steps that completely and precisely describe the algorithm.
\(\square\)
any):

Input:

Output: \(\square\)

\section*{Principal Mechanisms (select all that apply):}Single Loop
\(\square\) Nested Loop
\(\square\) Conditional (if/else) statementIndexing / Slicing
split()input()

Process (as a concise and precise LIST OF STEPS / pseudocode): (Assume libraries, if any, have already been imported.)
\(\square\)
6. Consider the art_library.csv from the Art Garfunkel's Library from kaggle. Each row in the dataset corresponds to a book. A snapshot of the data is given in the image below:
\begin{tabular}{|l|l|l|r|r|r|}
\hline Date Read & Author & Yooks & Year Published & Pages & Favorite \\
\hline Jun-68 & Jean-Jacques Rousseau & The Confessions & 1781 & 606 & 1 \\
\hline Jun-68 & Erich Fromm & The Art of Loving & 1956 & 146 & 1 \\
\hline Jun-68 & Mark Twain & The Adventures of Huckleberry Finn & 1884 & 288 & 0 \\
\hline Jul-68 & James Thurber & My Life and Hard Times & 1933 & 115 & 0 \\
\hline & & & & & \\
\hline Jan-22 & James Michener & Caravans & 1963 & 320 & 0 \\
\hline Jan-22 & Abraham Lincoln & The Spiritual Growth of a Public Man & 1973 & 47 & 0 \\
\hline Feb-22 & Joe Scarborough & Saving Freedom & 2020 & 272 & 0 \\
\hline
\end{tabular}

Fill in the Python program below:
\#Import the libraries for data frames
\(\square\)
\#Prompt user for input file name:
\(\square\)
\#Read input data into data frame:
\(\square\)
\#Print the number of applications for date
\(\square\)
\#Group the data by author to extract books written by Jean-Jacques Rousseau \#use groupby and get_group
\(\square\)
\#Print the latest year a Rousseau book was published
\(\square\)
7. Fill in the following functions that are part of a program that extracts data from a CSV file:
- getData(): asks the user for the name of the CSV and returns a DataFrame of the contents.
- extract(): computes and returns the maximum, minimum and average value of the input column
- getList(): returns a list of length (max-min)/avg, containing equally spaced numbers in range [min, max]
import pandas as pd
def getData():
"" "
Asks the user for the name of the CSV and Returns a dataframe of the contents. """
\(\square\)
def extract(df, col):
"""
Computes and returns the maximum, minimum and average values of the column col in dataframe df """
\(\square\)
def getList(max, min, avg):
"""
Creates and returns a list of equally spaced numbers in range [min, max]. The length of the list is (max-min)/avg """
8. (a) What is printed by the MIPS program below:

\section*{Output:}

(b) Modify the program to print out "ACEGIK". Shade in the box for each line that needs to be changed and rewrite the instruction below, or add instructions where necessary.ADDI \$sp, \$sp, -15 \# Set up stackADDI \$s3, \$zero, 1 \# Store 1 in a registerADDI \$t0, \$zero, 65 \# Set \$t0 at 65 (A)ADDI \$s2, \$zero, 15 \# Use to test when you reach 15SETUP: SB \$t0, \(0(\$ \mathrm{sp})\) \# Next letter in \$t0ADDI \$sp, \$sp, 1
\# Increment the stackADDI \$s3, \$s3,
\# Increment the counter by 1BEQ \$s3, \$s2, DONE
\# Jump to done if \$s3 == 15J SETUP
\# If not, jump back to SETUP for loopDONE: ADDI \$t0, \$zero, 0 \# Null (0) to terminate stringSB \$t0, \(0(\$ \mathrm{sp})\)
\# Add null to stackADDI \$sp, \$sp, -14
\# Set up stack to printADDI \$v0, \$zero, 4
\# 4 is for print stringADDI \$a0, \$sp, 0
\# Set \$a0 to stack pointer for printingsyscall
\# Print to the log
9. Fill in the \(\mathrm{C}++\) programs below to produce the Output on the right.
```

\#include <iostream>
using namespace std;
int main()
{
for(\square; i <=15; }\square)
cout << i+2 << endl;
} 14
return 0;
}
\#include <iostream>
using namespace std;
int main()
{
int n=-4, m=10;

```
```

 -5 12
    ```
    -5 12
    while(n+m \ ) {
    while(n+m \ ) {
-6 14
-6 14
-7 16
-7 16
-8 18
-8 18
        n--; ;
        n--; ;
        cout << n << " " << m << endl;
        cout << n << " " << m << endl;
    }
    }
    return 0;
    return 0;
}
}
#include <iostream>
using namespace std;
int main(){
for (\square) {
515 514 513 512 511 510
616615614613612
717716715714
818 817 816
919918
```

(a)
(b)
(c)
10. (a) Write a complete $\mathbf{C + +}$ program that repeatedly asks the user for their age until the age is in range [18,65], then it outputs the age:
//include library and namespace
\square
//main function signature

\{ //variable initialization
\square
//repeatedly ask for age until in [18, 65]
\square
//output age
\square
return 0;
\}
(b) The global population has grown from 1 billion in 1800 at a rate of approximately 1.1% per year.
Write a complete C++ program that asks the user for a year after 1800 and returns the global population (in billions) in that year.
//include library and namespace
\square
//main function signature
\square
//obtain input
//compute the population at 1.1% yearly increase
\square
//Output the global population (in billions) during the year entered by the user
\square
return 0;
\}

SCRATCH PAPER

