FINAL EXAM, VERSION 1

CSci 127: Introduction to Computer Science Hunter College, City University of New York

15 May 2019

Answer Key:

1. (a) What will the following Python code print:

```
s = "Robb,Stark;Tyrion,Lannister;Jon,Snow;Euron,Greyjoy"
 i. print(s.count(';'))
   print(s[-7:])
   Answer Key:
   3
   Greyjoy
   kings = s.split(';')
ii. js = kings[2]
   words = js.split(',')
   print(words[1].upper())
   Answer Key:
   SNOW
   for king in kings:
       w = king.split(',')
iii.
       print(w[1],w[0])
   Answer Key:
```

Stark Robb Lannister Tyrion Snow Jon Greyjoy Euron (b) Consider the following shell commands:

\$ mv p55.cpp prog55.cpp

```
$ ls
homework p40.py p41.py p55.cpp trees.csv
i. What is the output for:
```

Answer Key:

\$ ls

```
homework p40.py p41.py prog55.cpp trees.csv
```

Answer Key:

trees.csv

Answer Key:

hello, yourlogin.

2. (a) For each row below containing a decimal and hexadecimal number, shade in the box for the largest value in the row (or "Equal" if both entries have the same value):

	Decimal:	Hexadecimal:	Equal
a)	16	16	Equal
b)	18	12	Equal
c)	256	FF	Equal
d)	20	15	Equal
e)	13	D	Equal

Answer Key:

(b) Given the function below

```
def octStringToDec(octString):
    decNum = 0
    for c in octString:
        n = int(c)
        decNum = (decNum * 8) + n
    print(decNum)
```

i. What is the output of octStringToDec('10')

Answer Key:

8

 $_{
m ii.}$ What is the output of octStringToDec('15')

Answer Key:

13

What is the output of octStringToDec('101')

Answer Key:

65

3. (a) What is the value (True/False):

in1 = True

i. in2 = False

out = (not in1) and (not in2)

Answer Key:

out = False

in1 = False

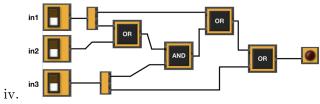
ii. in2 = True

out = (not in1 or in2) and (not in2 or in1)

Answer Key:

out = False

in1 = not False


... in2 = not False or False

in3 = not in1 or not in2

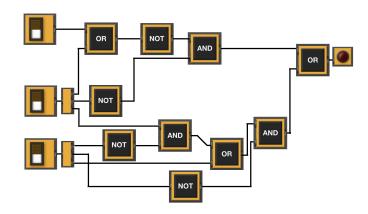
out = not in2 and not in3

Answer Key:

out = False

in1 = False

in2 = True

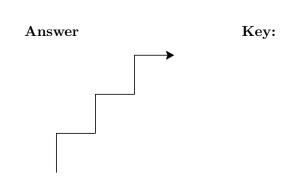

in3 = False

Answer Key:

out = False

(b) Design a circuit that implements the logical expression:

(not (in1 or in2) and (not in2)) or (((in2 and not in3) or in3) and not in3)



4. (a) Draw the output for the function call:

```
i. mystery(tori, 3)
```

```
import turtle
tori = turtle.Turtle()

def mystery(tina, n):
    for i in range(n):
        tina.left(90)
        tina.forward(50)
        tina.right(90)
        tina.forward(50)
```


ii. what are the formal parameters of mystery?

Answer Key: tina,n

(b) Given the function definition:

```
def enigma(n):
    for i in range(n,0,-1):
        help(i)
        print()
    def help(x):
    for j in range(i):
        print(j % 2, end=' ')
```

i. What is the output for enigma(6)?

 $\begin{array}{c} 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 \\ \end{array}$

5. Design an algorithm that prints out the number of 311 calls to the NYPD after a user-specified date from the NYC 311 calls OpenData. Specify the libraries, inputs and outputs for your algorithm and give the design in pseudocode.

Unique Key	Created Date	Closed Date	Agency	Agency Name	Complaint Type
42102569	04/01/2019 12:00:14 AM	04/01/2019 07:43:05 AM	NYPD	New York City Police Department	Noise - Residential
42101059	04/01/2019 12:00:21 AM	04/01/2019 06:12:11 AM	NYPD	New York City Police Department	Illegal Parking
42099515	04/01/2019 12:01:01 AM	04/01/2019 02:27:27 AM	NYPD	New York City Police Department	Blocked Driveway
42103744	04/01/2019 12:01:31 AM	04/01/2019 01:51:02 AM	NYPD	New York City Police Department	Noise - Residential
42102533	04/01/2019 12:01:50 AM	04/01/2019 12:24:02 AM	NYPD	New York City Police Department	Illegal Parking
42102278	04/01/2019 12:03:02 AM	04/01/2019 01:51:01 AM	NYPD	New York City Police Department	Noise - Residential
42098650	04/01/2019 12:03:11 AM	04/01/2019 05:33:50 PM	NYPD	New York City Police Department	Noise - Residential
42107429	04/01/2019 12:03:41 AM	04/03/2019 10:46:33 AM	HPD	Department of Housing Preservation	HEAT/HOT WATER
42110677	04/01/2019 12:04:37 AM	04/01/2019 12:04:37 AM	DOB	Department of Buildings	Building/Use
42103502	04/01/2019 12:04:38 AM	04/01/2019 07:05:09 AM	NYPD	New York City Police Department	Noise - Residential

Libraries:

Answer Key: pandas

Input:

Answer Key: The name of the CSV file and the year

Output:

Answer Key: The number of calls.

Process:

- (a) Ask user for file name and year.
- (b) Open the file as a dataFrame.
- (c) Select all the rows where 'Agency' is 'NYPD' and 'Created Date' is after the date entered by the user.
- (d) Print out the number of selected rows.
- 6. Fill in the Python program that will:

- prompt the user for the name of the input file
- prompt the user for the name of the output file
- read the image from the input file into a data frame
- compute the height and width of the image
- extract the **left quarter** of the image and save it to the output file

#P6,V1: saves the left quarter of an image #Import the libraries for storing and displaying images:
#Prompt user for input file name:
#Prompt user for output file name:
#Read image into an array:
#Compute the height of the image
#Compute the width of the image
Select left quarter and store in leftQuarterImg

```
#Save the left quarter image
```

Answer Key:

```
#P6,V1: saves the left quarter of an image
#Import the libraries for storing and displaying images:
import numpy as np
import matplotlib.pyplot as plt
#Prompt user for input file name:
inFileName = input('Enter input image: ')
#Prompt user for output file name:
outFileName = input('Enter ouput image: ')
#Read image into a numpy array:
img = plt.imread(inFileName)
#Compute the height of the image
height = img.shape[0]
#Compute the width of the image
width = img.shape[1]
# Select left quarter and store in leftQuarterImg
leftQuarterImg = img[ : , : width//4 ]
#Save the left quarter image
plt.imsave(outFileName, leftQuarterImg)
```

7. Complete the following program, based on the payroll dataset in the image below and the comments in the functions:

Fiscal Year	Agency Name	Agency Start Date	Work Location Borough	Title Description	Base Salary	Pay Basis	Regular Hours	OT Hours
2018	BOARD OF ELECTION	07/28/2014	MANHATTAN	TEMPORARY CLERK	13.79	per Hour	234.18	75.75
2018	BOARD OF ELECTION	02/28/2016	QUEENS	TEMPORARY CLERK	15	per Hour	1664.55	87
2018	BOARD OF ELECTION	03/13/2016	BRONX	FINANCIAL CLERK	19.79	per Hour	1638.88	66.25
2018	BOARD OF ELECTION	10/02/2017	BRONX	TEMPORARY CLERK	15	per Hour	1195.75	57.5
2018	BOARD OF ELECTION	10/31/2016	BRONX	TEMPORARY CLERK	15	per Hour	1339.38	60.75
2018	BOARD OF ELECTION	06/11/2012	BRONX	TEMPORARY CLERK	15	per Hour	1258.75	58.25

```
import pandas as pd
  def readDataFrame():
      inFile = input('Enter input file name: ')
      salaries = pd.read_csv(inFile)
      return(salaries)
  def alterDataFrame(df):
      newColName = input('Enter the name of the new column: ')
      df[newColName] = (df['Base Salary'] * 1.5) * df['OT Hours']
      return(df, newColName)
  def printColumnAverage(df, column):
      avg = df[column].mean()
      print(avg)
  def main():
      df = readDataFrame()
      df2, newColName = alterDataFrame(df)
      printColumnAverage(df2, newColName)
  if __name__ == '__main__':
      main()
8. (a) What are the values of register $s0 for the run of this MIPS program:
      #Sample program that loops up to 100
      ADDI $s0, $zero, 20 #set s0 to 20
      ADDI $s1, $zero, 20 #use to increment counter, $s0
      ADDI $s2, $zero, 100 #use to compare for branching
      AGAIN: ADD $s0, $s0, $s1
      BEQ $s0, $s2, DONE
      J AGAIN
      DONE: #To break out of the loop
      Answer Key:
      20
      40
      60
      80
       100
```

(b) Indicate what modifications are needed to the MIPS program (repeated below) so that it decrements by 10 all the way down to 0 (shade in the box for each line that needs to be changed and rewrite the instruction in the space below).

```
#Sample program that loops up to 100
  ADDI $s0, $zero, 0 #set s0 to 0
  ADDI $s1, $zero, 10 #use to increment counter, $s0
  ADDI $s2, $zero, 100 #use to compare for branching
  AGAIN: ADD $s0, $s0, $s1
  BEQ $s0, $s2, DONE
  J AGAIN
  DONE: #To break out of the loop
9. What is the output of the following C++ programs?
       //Quote by George R.R. Martin, A Game of Thrones
       #include <iostream>
       using namespace std;
       int main()
       ₹
         cout << "Never forget what you are, ";</pre>
         cout << "for \nsurely the world ";</pre>
   (a)
         cout << "will not." << endl;</pre>
         cout << "Make it your strength, ";</pre>
         cout << endl << "then it can never ";</pre>
         cout << "be your weakness.";</pre>
         return 0;
       }
       Answer Key:
       Never forget what you are, for
       surely the world will not.
       Make it your strength,
       then it can never be your weakness. //\text{More GOT}
       #include <iostream>
       using namespace std;
       int main()
       {
         int count = 3;
         while (count > 0) {
   (b)
           cout <<"Every flight\n";</pre>
           count--;
         }
         cout << "\nbegins with a fall.";</pre>
         cout << endl;</pre>
         return 0;
       }
       Answer Key:
       Every flight
```

```
Every flight
       Every flight
       #ffinadeithostfelh>
       using namespace std;
       int main(){
            int i, j;
            for (i = 0; i < 5; i++){
                for (j = 0; j < 5; j++){
                    if (j == 2)
                        cout << "*";
    (c)
                    else if( j % 2 == 0)
                        cout << "X";
                    else
                        cout << "0";
                }
                cout << endl;</pre>
            }
          return 0;
       }
       Answer Key:
       X0*OX
       X0*0X
       X0*0X
       X0*0X
       X0*0X
10. (a) Translate the following program into a complete C++ program:
       #Python Loops, V1:
       for i in range(5,55,5):
           print('X -', i, '- X')
       Answer Key:
       //C++ Loop, V1
       #include <iostream>
       using namespace std;
       int main()
       {
            int i;
            for (i = 5; i \le 50; i+=5) {
                cout << "X-" << i << " -X" << endl;
            }
          return 0;
```

(b) Assume the coastline erodes 1.5% each year. Write a **complete C++ program** that asks the user for the starting elevation and computes the number of years it will take until the coast is under water (sea level is considered to be 0).

```
#include <iostream>
using namespace std;
int main()
{
    cout << "Please enter the initial elevation in ft: ";</pre>
    double elevation = 0;
    cin >> elevation;
    int years = 0;
    while(elevation >= 0)
    {
        std::cout << elevation << std::endl;</pre>
        elevation = elevation - 0.015;
        years++;
    }
    cout << "It will take " << years << " years until the coast is under water.\n";
    return 0;
}
```