## Answer Key:

Final Exam, Version 4<br>CSci 127: Introduction to Computer Science<br>Hunter College, City University of New York

20 December 2021

1. (a) Given the quote in the code below, fill in the code to produce the Output on the right: quote = , "Simplicity is the ultimate sophistication." Leonardo da Vinci'
i.


Answer Key:
quote[-17:-9]
ii. print (quote $\square$ )

Answer Key:
[2:12].lower()
iii. words = $\square$
print("This quote has", len(words)-4, "words")

Answer Key:
quote.split(" ")
(b) Fill in the code below to produce the Output on the right:
letters = "z * y * x * w"
i.
print("There are", letters. $\square$ "letters")

Answer Key:
count('*')+1
for i in range(len(letters)):
ii. $\square$

```
print(letters[i])
```


## Answer Key:

i \% $4=0$
(c) Consider the following shell commands:
\$ ls
code web
i. What is the output for:
\$ cd code
\$ ls
plots star.py turtle_progs
\$ mv star.py turtle_progs/
\$ ls

## Answer Key:

plots turtle_progs
ii. What is the output for:
\$ cd turtle_progs/
\$ ls
panorama.py ramble.py star.py
\$ ls | grep ra*

Answer Key:

```
ramble.py
```

iii. What is the output for:
\$ cd ../ ../
\$ ls

## Answer Key: <br> code web

2. (a) Select the color corresponding to the rgb values below:

## Answer Key:

i. $\mathrm{rgb}=(255,0,0)$
$\square$ black
$\mathbf{X}$ redwhitegraypurple
ii. $\mathrm{rgb}=$ "\#ABABAB"black $\square$ $\square$ redwhite X graypurple
iii. $\mathrm{rgb}=(0.0,0.0,0.0)$
$\mathbf{X}$ black $\quad \square$ red
$\square$ whitegraypurple
iv. Select the LARGEST Binary number: X 110100011101101000000111
101010
v. What is the Binary number equivalent to decimal 160 ?0F $\square 9$ X A0 FC3
(b) Given the list symbols below, fill in the code to produce the Output on the right:

```
symbols = [ "*", "#", "+", "$"]
```

i. Answer Key:
for i in range ( 4 ): print(symbols[i], end=" ")

## Output:

```
* # + $
```

Output:

```
* $
```


## Answer Key:

```
    import numpy as np
iii. import matplotlib.pyplot as plt
    im = np.ones( (10,10,3))
    plt.imshow(im)
    plt.show()
```

Answer Key:
import numpy as np
iv. import matplotlib.pyplot as plt
im = np.ones $((10,10,3))$

plt.imshow(im)
plt.show()

Output:


## Output:


3. (a) What is the value (True/False):

```
in1 = True
i. in2 = False
out = not (in1 or in2)
```

Answer Key:
out = False
in1 = True
in2 = False
in3 $=$ in1 and in2
out $=$ (in1 and not in2) or in3

Answer Key:
out = True

iii.

```
in1 = True
in2 = False
in3 = False
```


## Answer Key:

out = True
(b) Draw a circuit that implements the logical expression:

```
(in1 or in2) and not(in1 and not in2)
```


## Answer Key:


(c) Fill in the circuit with the gate-symbol or gate-name that implements the logical expression:

```
not ( not in1 or in2 ) and ( ( not in2 and in3) or in3)
```


## Answer Key:


4. Consider the following functions:

```
def add_odd(items):
    sum = 0
    for i in range(len(items)):
        sum += compare(items[i])
    return sum
```

```
def compare(i):
    return i * (i % 2)
def main():
    nums = [1, 2, 3, 4, 5, 6, 7, 8, 9]
    print(add_odd(nums))
```

(a) What are the formal parameters for compare()?

Answer Key: i
(b) What are the actual parameters for add_odd()?

Answer Key: nums
(c) How many calls are made to compare() after calling main()?

Answer Key: 9
(d) What is the output after calling main()?

## Output:

## Answer Key: <br> 25

5. Design an algorithm that asks the user for the name of a text file containing a grid of numbers and loads it into a 2D array of integers (think like an image without the color channel), as well as an input number $n$. The program outputs the number of occurrences of $n$ found in the grid. Libraries:

## Answer Key: numpy <br> Input:

Answer Key: The input file and number n Output:

Answer Key: The number of times n is found in the grid Design Pattern:
Answer Key:SearchFind MinFind Max
X Find All Principal Mechanisms (select all that apply):

| Answer Key: $\square$ Search | $\square$ Single Loop | X Nested Loop |
| :--- | :---: | :--- |$\quad$ X Conditional

Process (as a concise and precise LIST OF STEPS / pseudocode):
(Assume libraries have already been imported.)

## Answer Key:

(a) Ask the user for input file name
(b) Load the data into a numpy array, call it grid
(c) Ask the user for input number and store it in $n$
(d) Set variables count to 0
(e) Use a nested loop to consider every number in grid looping for rows in outer loop and columns in inner loop
i. if the current number (the number at grid[current_row, current_column] $==n$, increment count
(f) Return count
6. Consider the class_size.csv dataset from NYC Open Data preliminary average class size aggregated by school for 2021. Each row in the dataset corresponds to a class grade level and program type at a given school. A snapshot of the data is given in the image below:

| School Name | Grade Level | Program Type | Num Students | Num Classes | Avg Class Size | Min Class Size | Max Class Size |
| :--- | ---: | :--- | ---: | ---: | ---: | ---: | ---: |
| BROOKLYN ARBOR | K | Gen Ed | 41 | 2 | 20.5 | 19 | 22 |
| BROOKLYN ARBOR | K | ICT | 19 | 1 | 19.0 | 19 | 19 |
| BROOKLYN ARBOR | 1 | Gen Ed | 60 | 3 | 20.0 | 18 | 22 |
| BROOKLYN ARBOR | 1 | ICT | 16 | 1 | 16.0 | 16 | 16 |
| BROOKLYN ARBOR | 2 | Gen Ed | 48 | 2 | 24.0 | 23 | 25 |
| BROOKLYN ARBOR | 2 | ICT | 44 | 2 | 22.0 | 21 | 23 |
| BROOKLYN ARBOR | 3 | Gen Ed | 70 | 3 | 23.3 | 21 | 25 |
| BROOKLYN ARBOR | 3 | ICT | 26 | 1 | 26.0 | 26 | 26 |
| BROOKLYN ARBOR | 4 | Gen Ed | 42 | 2 | 21.0 | 19 | 23 |
| BROOKLYN ARBOR | 4 | ICT | 48 | 2 | 24.0 | 23 | 25 |

Fill in the Python program below:

```
Answer Key:
#Import the libraries for data frames
import pandas as pd
#Prompt user for input file name:
csvFile = input('Enter CSV file name: ')
#Read input data into data frame:
df = pd.read_csv(csvFile)
#Print the number of rows per Program Type
# (i.e. number of rows for Gen Ed, number of rows for ICT, etc.)
print(df['Program Type'].value_counts())
#Group the data by Grade Level to extract Kindergarten
#use groupby and get_group
kindergarten = df.groupby('Grade Level').get_group('K')
#Print the average class size for kindergarten across all schools
print(kindergarten['Avg Class Size'].mean())
```

7. Consider the Python program below to display the first n Fibonacci numbers. The Fibonacci sequence is generated as follows: $\mathrm{F} 0=0, \mathrm{~F} 1=1, \mathrm{~F} 2=\mathrm{F} 1+\mathrm{F} 0$, $\mathrm{F} 3=\mathrm{F} 2+\mathrm{F} 1, \ldots, \mathrm{Fn}=\mathrm{Fn}-1$ + Fn-2. Fill-in the functions based on the comments and the overall program. Pay attention to the sample output in the comments in-order to implement the function correctly.

## Answer Key:

```
def print_n_fib(n):
    f_1 = 0
```

```
f_2 = 1
print('FO = 0')
for i in range(1,n+1):
    fib = f_1 + f_2
    print('F'+str(i), '=', fib)
    f_2 = f_1
    f_1 = fib
```


## Answer Key:

```
def validate_input(num):
    while(num <= 2):
            print("Please enter a number > 2.")
            num = int(input("How many Fibonacci numbers to print? "))
        return num
# Display n Fibonacci numbers
def main():
    n = int(input("How many Fibonacci numbers to print? "))
    n = validate(n)
    #print n Fibonacci numbers
    print_n_fib(n)
```

8. (a) What does the MIPS program below print:

## Answer Key:

Hello!
(b) Modify the program to print out HELLO

Shade in the box for each line or line-pair that needs to be changed and rewrite the instruction below. If the line needs to be deleted, write Delete.

## Answer Key:

\# Print HELLO
ADDI \$sp, \$sp, -6
ADDI \$t0, \$zero, 72 \# H
SB \$t0, $0(\$ \mathrm{sp})$
ADDI \$t0, \$zero, 69 \# E
SB \$t0, 1(\$sp)
ADDI \$t0, \$zero, 76 \# L
SB \$t0, 2 (\$sp)
ADDI \$t0, \$zero, 76 \# L

```
SB $t0, 3($sp)
ADDI $t0, $zero, 79 # 0
SB $t0, 4($sp)
ADDI $t0, $zero, 0 # (null)
SB $t0, 5($sp)
ADDI $v0, $zero, 4 # 4 is for print string
ADDI $a0, $sp, 0
syscall # print to the log
```

(c) Modify the MIPS program below to count from 10 to 30, up by 5 . Shade in the box for each line that needs to be changed and rewrite the instruction below.

## Answer Key:

```
ADDI $s0, $zero, 10 #set s0 to 10
```

ADDI \$s1, \$zero, 5 \#set s1 to 5
ADDI \$s2, \$zero, 30 \#use to compare for branching
AGAIN: ADD \$s0, \$s0, \$s1
BEQ \$s0, \$s2, DONE
J AGAIN
DONE: \#To break out of the loop
(d) After the modification, how many times is the line labeled AGAIN : executed?

## Answer Key:

4 times.
9. Fill in the C++ programs below to produce the Output on the right.

```
#include <iostream>
using namespace std;
int main()
{
```

    for (int \(i=0 ; \quad i+=10)\{\)
    
## (a) Answer Key:

i <=30;

```
        cout << i*2 << endl;
```

    \}
    return 0;
    \}

```
#include <iostream>
using namespace std;
int main()
{
    int count = 0;
    int num = 0;
    while(count }\square\mathrm{ && num }
            cout << count << " " << num << endl;
            count +=1;
            if(count % 2 == 0)
                num +=1;
    }
    return 0;
}
```

(b)

## Answer Key:

```
count <= 5 \&\& num <= 2
or
count < 6 \&\& num <3
#include <iostream>
using namespace std;
int main(){
    for (int i = 5; }\i--)
```

(c) Answer Key:
i $>=-2$;
or
i > -3;
cout << "Keep going!" << endl;
\}
return 0;
\}
10. (a) Translate the following python program into a complete $\mathbf{C}++$ program:

```
for i in range(20,3,-5):
    for j in range(50,i,-3):
        print(i, j)
```


## Answer Key:

```
#include <iostream>
using namespace std;
int main(){
    for(int i = 20; i > 3; i-=5){
        for(int j = 50; j > i; j-=3){
            cout << i << " " << j << endl;
            }
    }
    return 0;
}
```

(b) Write a complete $\mathbf{C +}+$ program that asks the user for the number of credit hours and outputs the student category on a new line as follows:

- "Freshman" for $[0,29]$ hours of earned credit
- "Sophomore" for $[30,59]$ hours of earned credit
- "Junior" for $[60,89]$ hours of earned credit
- "Senior" 90 or more hours of earned credit


## Answer Key:

//include library and namespace
\#include <iostream>

```
using namespace std;
```

//function signature
int main()\{
//declare variables
float hours;
//obtain input
cout << "Please enter your credit hours: ";
cin >> hours;
//output student category
if(hours <= 29)
cout << "Freshman" << endl;
else if (hours <= 59)
cout << "Sophomore" << endl;
else if(hours <= 89)
cout << "Junior" << endl;
else
cout << "Senior" << endl;
return 0;
\}

