Row:	SEAT:

Final Exam, Version 1
 CSci 127: Introduction to Computer Science Hunter College, City University of New York

20 December 2021

Exam Rules

- Show all your work. Your grade will be based on the work shown.
- The exam is closed book and closed notes with the exception of an $81 / 2^{\prime \prime} \times 11$ " piece of paper filled with notes, programs, etc.
- When taking the exam, you may have with you pens and pencils, and your note sheet.
- You may not use a computer, calculator, tablet, phone, earbuds, or other electronic device.
- Do not open this exam until instructed to do so.

Hunter College regards acts of academic dishonesty (e.g., plagiarism, cheating on examinations, obtaining unfair advantage, and falsification of records and official documents) as serious offenses against the values of intellectual honesty. The College is committed to enforcing the CUNY Policy on Academic Integrity and will pursue cases of academic dishonesty according to the Hunter College Academic Integrity Procedures.

I understand that all cases of academic dishonesty will be reported to the Dean of Students and will result in sanctions.		
Name:		
EmpID:		

ASCITTABLE

Decimal	Hex	Char									
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	
1	1	[START OF HEADING]	33	21	!	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22	"	66	42	B	98	62	b
3	3	[END OF TEXT]	35	23	\#	67	43	C	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	\%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	\&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	1	72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	A	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	B	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	I
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E	,	78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	o
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	p
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	s
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	y
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	\{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5 C	1	124	7 C	1
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D]	125	7D	\}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	\wedge	126	7E	\sim
31	$1 F$	[UNIT SEPARATOR]	63	3F	?	95	5F	-	127	7F	[DEL]

1. (a) Given the quote in the code below, fill in the code to produce the Output on the right: quote $=$, "Every moment is a fresh beginning." -T.S Eliot-'
i. $\operatorname{print}($ quote $[\square])$
Output:
T.S Eliot
Output:
ii. print (quote[2:7]. \square)
EVERY
print("This quote has", end=" ")

Output:

iii.
print (quote.count (\square) -2 , "words.")
This quote has 6 words.
(b) Fill in the code below to produce the Output on the right:
numbers $=$ "1, 2, 3, 4, 5"
i.
num_list $=$ numbers.

Output:

2
for n in num_list :
ii.

(c) Consider the following shell commands:

```
$ ls
bronx.html logo.png queens.html snow.png
```

i. What is the output for: \$ mkdir maps images \$ mv *html maps
\$ ls

Output:

\square
ii. What is the output for:

```
$mv *.png images
$ cd maps
$ ls | grep ee
```


Output:

iii. What is the output for:

```
$ cd ../
```

\$ ls

Output:

\square
2. (a) Select the color corresponding to the rgb values below:
i. $\mathrm{rgb}=(255,255,255)$
\square black
\square redwhitegraypurple
ii. $\mathrm{rgb}=$ "\#AB0000"black \square red
\square whitegraypurple
iii. $\mathrm{rgb}=(1.0,0.0,1.0)$blackredwhite
graypurple
iv. Select the SMALLEST Hexadecimal number:0 F $\square 9$A0
$\square \mathrm{FF}$C3
v. What is the Binary number equivalent to decimal 40 ?110100011101101000000111
101010
(b) Given the list words below, fill in the code to produce the Output on the right:

```
words = [ "fast", "clear", "light", "hot", "cold"]
```

i. for i in range \square):
print(words[i], end=" ")
Output:
fast clear light

Output:
clear cold
print (words[j], end=" ")
):
ii. for j in range \square
正

Output:

3. (a) What is the value (True/False):
in1 = False
i. in2 = True
\square TrueFalse
out $=$ not in1 and in2
in1 = False
ii. in2 = True
in3 $=$ in1 or not in2
out $=$ not(in1 or not in2) and not in3False

iii.
in1 = True
in2 $=$ True
in3 $=$ False
\square TrueFalse
(b) Draw a circuit that implements the logical expression:
(in1 and in2) or not(in1 or not in2)
(c) Fill in the circuit with the gate-symbol or gate-name that implements the logical expression:
(not in1 or in2) and not(not(in2 and in3) or in3)

4. Consider the following functions:

```
def count_larger(l, n):
    count = 0
    for i in range(len(l)):
        if compare(l[i], n):
            count += 1
    return count
```

```
def compare(num, comp):
    return num > comp
def main():
    numbers = [21, 34, 69, 62, 82, 46, 15]
    print(count_larger(numbers, 50))
```

(a) What are the formal parameters for compare()? \square
(b) What are the actual parameters for count_larger? \square
(c) How many calls are made to compare() after calling main()? \square
(d) What is the output after calling main()?

Output:
\square
5. Design an algorithm that asks the user for the name of a text file containing a grid of numbers and loads it into a 2D array of integers (think like an image without the color channel), then outputs the index (row, col) of the LARGEST number in the array.

Design Pattern:Search
\square Find MinFind MaxFind All

Principal Mechanisms (select all that apply):
\square Single Loop
\square Nested Loop
Conditional (if/else) statementIndexing / Slicing \square split()input()

Process (as a concise and precise LIST OF STEPS / pseudocode):
(Assume libraries have already been imported.)
6. Consider the open_restaurants.csv dataset for restaurant reopening applications under Phase Two of the New York Forward Plan to place outdoor seating in front of their business on the sidewalk and/or roadway. Each row in the dataset corresponds to an application. A snapshot of the data is given in the image below:

Seating Interest	Restaurant Name	Borough	Sidewalk Area	Roadway Area	Approved for Sidewalk Seating	Approved for Roadway Seating
sidewalk	HUNGRY GHOST	Manhattan	200	640	yes	no
both	Prince Laban\&Chinese rest	Queens	144	144	yes	yes
sidewalk	Philly Pretzel Factory	Brooklyn	6500	920	yes	no
both	BICKLES TO GO	Bronx	100	160	yes	yes
roadway	STARBUCKS	Manhattan	160	160	no	yes
roadway	OVENLY	Brooklyn	40	168	no	yes
sidewalk	LE PAIN QUOTIDIEN	Manhattan	105	280	yes	no
both	Le Pain Quotidien GCW	Manhattan	90	240	yes	yes
both	Asian Kabab and Curry	Brooklyn	60	60	yes	yes

Fill in the Python program below:
\#Import the libraries for data frames
\square
\#Prompt user for input file name:
\square
\#Read input data into data frame:
\square
\#Print the number of applications for each Seating Interest \# (i.e. number of applications for sidewalk, number for roadway, etc.)
\square
\#Group the data by Borough to extract applications in Queens \#use groupby and get_group
\square
\#Print the largest sidewalk area in Queens
\square
7. Consider the Python program below to display the multiplication table for an input number. Fillin the functions based on the comments and the overall program. Pay attention to the sample output in the comments in-order to implement the function correctly. Note that the sample output for print_mult_talbe is not complete to save space, your function must display the full multiplication table.

```
# Displays multiplication table n
# Example output multiplication table of 3:
# 3 X 1 = 3
# 3 X 2 = 6
# . . .
# 3 X 9 = 27
# 3 x 10 = 30
def print_mult_table(n):
```

```
# Validate the input to be between 1 and 10
# If the input is not in the expected range,
# keep asking for the number.
# Example output:
# Please enter a number between 1 and 10.
# Display the multiplication table of?
def validate_input(num):
```

```
# Display multiplication table of an input number in range 1 - 10
def main():
    num = int(input("Display multiplication table of? "))
    num = validate_input(num)
    #print the multiplication table of num
    print_mult_table(num)
```

8. (a) What does the MIPS program below print:

Output:

(b) Modify the program to print out Hall!

Shade in the box for each line or line-pair that needs to be changed and rewrite the instruction below. If the line needs to be deleted, write Delete.
ADDI \$sp, \$sp, -7ADDI \$t0, \$zero, $72 \quad$ \# store 72 in \$t0
SB \$t0, $0(\$ \mathrm{sp})$ADDI \$t0, \$zero, 101
\# store 101 in \$t0 SB \$t0, 1(\$sp)ADDI \$t0, \$zero, 108
\# store 108 in \$t0 SB \$t0, 2(\$sp)ADDI \$t0, \$zero, 108 \# store 108 in \$t0 SB \$t0, 3(\$sp)ADDI \$t0, \$zero, 111 \# store 111 in \$t0 SB \$t0, 4(\$sp)ADDI \$t0, \$zero, 33
\# store 33 in \$t0 SB \$t0, 5(\$sp)ADDI \$t0, \$zero, 0
\# (null)
SB \$t0, 6(\$sp)ADDI \$v0, \$zero, 4
\# 4 is for print stringADDI \$a0, \$sp, 0
\# Set \$a0 to stack pointersyscall
\# Print to the log
(c) Modify the MIPS program below to count from 30 to 0 , down by 5 . Shade in the box for each line that needs to be changed and rewrite the instruction below.ADDI \$s0, \$zero, 30 \#set s0 to 30ADDI \$s1, \$zero, 3 \#set s1 to 3ADDI \$s2, \$zero, 15 \#use to compare for branchingAGAIN: SUB \$s0, \$s0, \$s1BEQ \$s0, \$s2, DONEJ AGAIN

DONE: \#To break out of the loop
(d) After the modification, how many times is the line labeled AGAIN: executed?
\square
9. Fill in the $\mathrm{C}++$ programs below to produce the Output on the right.

```
    #include <iostream>
    using namespace std;
    int main()
{
    for(int i = 0; i <=30; प){ 0
(a)
        cout << i*2 << endl;
    }
    return 0;
}
#include <iostream>
using namespace std;
int main()
{
    int count = 5;
    int num = 2;
(b)
```

```
    while(count \square}&& num \square)
```

 while(count \square}&& num \square)
 cout << count << " " << num << endl;
 cout << count << " " << num << endl;
 count -=1;
 count -=1;
 if(count % 2 == 0)
 if(count % 2 == 0)
 num -=1;
 num -=1;
 }
 }
 return 0;
 return 0;
 }
 }
 \#include <iostream>
using namespace std;
int main(){
(c)
for (int i = 5; }\square\mathrm{ ; i--){
cout << "Still counting!" << endl;
}
return 0;
}

```

\section*{Output:}

0
20
40
60

\section*{Output:}

52
41
31
20
10

\section*{Output:}
```

Still counting!

```
10. (a) Translate the following python program into a complete \(\mathbf{C}++\) program:
for i in range \((0,10,2)\) :
for \(j\) in range(i,0,-1): print(i, j)
//include library and namespace
\(\square\)
//main function signature
\(\square\)
\{
//outer loop line
\(\square\)
//inner loop line
\(\square\)
//loop body
\(\square\)
//return
\(\square\)
\}
(b) Write a complete \(\mathrm{C}++\) program that asks the user for their age and outputs the age category on a new line as follows:
- "Child" if the user is 18 or younger
- "Adult" if the user is older than 18 but less than 65
- "Senior" otherwise
//include library and namespace
\(\square\)
//main function signature
\(\square\)
//obtain input
\(\square\)
//output age category
\(\square\)
//return
\(\square\)
\}```

