Answer Key:

FINAL EXAM, VERSION 3 CSci 127: Introduction to Computer Science Hunter College, City University of New York

16 December 2019

```
1. (a) What will the following Python code print:
          pioneers = "Jones-Karen Spark;Jobs-Steve;Gates-Bill"
        i. print(pioneers[-4:],pioneers[-10:-5])
          print(pioneers.count('-'))
          Answer Key:
          Bill Gates
          3
          names = pioneers.split(';')
          m = names[1]
       ii
          print(m[:4])
          Answer Key:
          Jobs
          for n in names:
       iii.
              print(n.split('-')[0].upper())
          Answer Key:
          JONES
          JOBS
          GATES
```

(b) Consider the following shell commands:

\$ ls
snow.png p30.py p40.py tickets.png
i. What is the output for:
 \$ ls *png

snow.png tickets.png
ii. What is the output for:
\$ ls | grep py | wc -1
Answer Key:
2
iii. What is the output for:
\$ mkdir new
\$ cd new
\$ touch stars.png
\$ ls

Answer Key: stars.png

2. (a) Consider the code:

	An	swer Key:									
	imp tho	mport turtle homasH = turtle.Turtle()									
	i.	After the comm \Box black	and: thomasH.c X green	color("#00DD00"),	what color is t ⊐ gray	zhomasH? □ purple					
	ii.	After the comm \Box black	and: thomasH.c □ green	color("#FFFFFF"), X white	what color is t ⊐ gray	thomasH? □ purple					
	iii. Fill in the code below to change thomasH to be the brightest red: thomasH.color("# F F 0 0 0 0 ")										
	iv. Fill in the code below to change thomasH to be the color black: thomasH.color("# 0 0 0 0 0 0 0 ")										
(b) Fill in the code to produce the output on the right:											
	i.	Answer Key: print(i, en	Output: 0 1 2 3 4 5 6 7 8								
	ii.	Answer Key: print(i, er	for j in rang nd=" ")	e($-1, 4, 1$):	-1 0 1 2 3						

Output:

Output:


```
Answer Key:
            import numpy as np
            import matplotlib.pyplot as plt
       iv. im = np.ones( (10, 10, 3) )
                    3
                               3
                      」,1::|
                                 [], :] = 0
            im[1::_
            plt.matshow(im)
            plt.show()
3. (a) What is the value (True/False):
          in1 = False
        i. in2 = True
          out = in1 or in2
          Answer Key:
          out = True
          in1 = True
        ii. in2 = True
          out = not in1 or (in2 and not in2)
          Answer Key:
          out = False
           in1 = True
          in2 = True or not in1
       iii.
          in3 = in1 \text{ or } in2
          out = in1 and not in3
          Answer Key:
          out = False
```


(b) Draw a circuit that implements the logical expression:

(not (in1 and in2) and (not in2))

(c) Fill in the circuit that implements the logical expression:

(in1 and (in1 and (not in2))) and (in3 or (in2 and (not in3))

4. (a) Draw the output for the function calls:

1: 2:

3:

4:

5: 6:

7:

8:

9: 10:

11:

12:

13:

14:

15:

```
i. ramble(tyler,4,True)
                                           Answer Key:
import turtle
tyler = turtle.Turtle()
tyler.shape('circle')
def ramble(tori, dist, repeat):
    if dist > 5:
        for i in range(4):
             tori.left(90)
             tori.forward(dist*10)
                                        ii. ramble(tyler,30,False)
        ramble(tori,dist//2,repeat)
    elif repeat:
        for i in range(dist):
             tori.forward(20)
             tori.stamp()
                                           Answer Key:
    else:
        tori.stamp()
```

(b) What are the formal parameters for ramble():

Answer Key: tori, dist, repeat

- (c) If you call ramble(tyler,4,True), which branches of the function are tested (check all that apply): Answer Key:
 - $\hfill\square$ The block of code at Lines 6-9.
 - ${\bf X}\,$ The block of code at Lines 11-13.
 - $\hfill\square$ The block of code at Line 15.
 - \Box None of these blocks of code (lines 6-9, 11-13, 15) are visited from this invocation (call).

- (d) If you call ramble(tyler,30,False), which branches of the function are tested (check all that apply): Answer Key:
 - **X** The block of code at Lines 6-9.
 - **X** The block of code at Lines 11-13.
 - $\hfill\square$ The block of code at Line 15.
 - \Box None of these blocks of code (lines 6-9, 11-13, 15) are visited from this invocation (call).
- 5. Design an algorithm that rotates an image by 90 degrees to the right. For simplicity, you may assume a square image (i.e. same hight and length)

Libraries:

Answer Key: matplotlib.pyplot and numpy Input:

Answer Key: The name of the image file **Output:**

Answer Key: The rotated image Process (as a list of steps):

- (a) Ask user for image file name
- (b) Read the image in a numpy array, call it img
- (c) Create a new numpy array with same dimensions, call it img2

- (d) Copy the first row of img into the last column of img2, such that img[0,0,:] == img2[0,n,:], img[0,1,:] == img2[1,n,:], ..., img[0,n,:] == img2[n,n,:]
- (e) Repeat analogous process to copy the second row of img into the second-to-last column of img2, third row of img into third-to-last column of img2, and so on for all rows in img
- (f) Save img2
- 6. Given the FiveThirtyEight dataset containing data on nearly 3 million tweets sent from Twitter handles connected to the Internet Research Agency, a Russian "troll factory", a snapshot given in the image below:

author	content	region	language	publish_date	harvested_date	following	followers	updates
10_GOP	"We have a sitting Democrat US Senator on trial	Unknown	English	10/1/2017 19:58	10/1/2017 19:59	1052	9636	253
10_GOP	Marshawn Lynch arrives to game in anti-Trump s	Unknown	English	10/1/2017 22:43	10/1/2017 22:43	1054	9637	254
10_GOP	JUST IN: President Trump dedicates Presidents	Unknown	English	10/1/2017 23:52	10/1/2017 23:52	1062	9642	256
10_GOP	Dan Bongino: "Nobody trolls liberals better than	Unknown	English	10/1/2017 2:47	10/1/2017 2:47	1050	9644	247
10_GOP	'@SenatorMenendez @CarmenYulinCruz Doesn'	Unknown	English	10/1/2017 2:52	10/1/2017 2:53	1050	9644	249
10_GOP	As much as I hate promoting CNN article, here t	Unknown	English	10/1/2017 3:47	10/1/2017 3:47	1050	9646	250
10_GOP	After the 'genocide' remark from San Juan Mayo	Unknown	English	10/1/2017 3:51	10/1/2017 3:51	1050	9646	251
10_GOP	Sarah Sanders destroys NBC reporter: "Trump n	Unknown	English	10/10/2017 20:57	10/10/2017 20:57	1066	10319	301
10_GOP	Hi @MichelleObama, remember when you praise	Unknown	English	10/10/2017 22:06	10/10/2017 22:06	1066	10320	302
10_GOP	Wow! Even CNN is slamming the Obamas for sil	Unknown	English	10/10/2017 22:17	10/10/2017 22:17	1066	10322	303
10_GOP	First lady Melania Trump visits infant opioid treat	Unknown	English	10/10/2017 23:42	10/10/2017 23:42	1068	10328	304
10_GOP	"It took Hillary abt 5 minutes to blame NRA for n	Unknown	English	10/11/2017 20:26	10/11/2017 20:27	1070	10358	308

Fill in the Python program below:

```
#P6,V3: extracts dates with highest number of troll tweets
#Import the libraries for data frames and plotting data:
import pandas as pd
import matplotlib.pyplot as plt
#Prompt user for input file name:
csvFile = input('Enter CSV file name: ')
#Read input data into data frame:
trolls = pd.read_csv(csvFile)
#split date into date and time columns
trolls[['pub_date','pub_time']] = trolls.publish_date.str.split(expand=True)
#Count the number of tweets for each date:
trollDates = trolls["pub_date"].value_counts()
#Print the top 5 dates with most troll tweets
print(trollDates[:5])
```

#Generate a bar plot of the top 5 dates with largest number of troll tweets
trollDates.plot.bar()
plt.show()

7. Write a **complete Python program** that prompts the user for the name of an .png (image) file and prints the fraction of pixels that are very light. A pixel is very light if the red, green, and blue values are **all** over 90%.

Answer Key:

```
#Import the packages for images and arrays:
import matplotlib.pyplot as plt
import numpy as np
#Ask user for image name and read into img:
inImg = input('Enter input image: ')
img = plt.imread(inImg)
#Get height and width:
height = img.shape[0]
width = img.shape[1]
#Initialize counter:
count = 0
#Loop through all the pixels:
for row in range(height):
    for col in range(width):
        #Check if each pixel is very light and update count:
        if (img[row,col,0] > .9) and (img[row,col,1] > .9) and (img[row,col,2] > .9):
             count = count + 1
#Compute and print fraction:
frac = count/(height*width)
print('Fraction light is', frac)
```

8. (a) What is printed by the MIPS program below:

Answer Key:

!!!!!

(b) Modify the program to print out 99 copies of the character '!'. Shade in the box for each line that needs to be changed and rewrite the instruction below.

```
#Loop through characters
ADDI $sp, $sp, -100  # Set up stack
ADDI $s3, $zero, 1  # Store 1 in a registrar
ADDI $t0, $zero, 33  # Set $t0 at 33 (!)
```

```
ADDI $s2, $zero, 99
                         # Use to test when you reach 100
SETUP: SB $t0, 0($sp)
                         # Next letter in $t0
ADDI $sp, $sp, 1
                         # Increment the stack
SUB $s2, $s2, $s3
                         # Decrease the counter by 1
BEQ $s2, $zero, DONE
                         # Jump to done if $s0 == 0
J SETUP
                         # If not, jump back to SETUP for loop
DONE: ADDI $t0, $zero, 0 # Null (0) to terminate string
SB $t0, 0($sp)
                         # Add null to stack
ADDI $sp, $sp, -100
                         # Set up stack to print
ADDI $v0, $zero, 4
                         # 4 is for print string
ADDI $a0, $sp, 0
                         # Set $a0 to stack pointer for printing
syscall
                         # Print to the log
```

9. What is the output of the following C++ programs?

```
//Quote by Bill Gates
#include <iostream>
using namespace std;
int main()
{
(a) cout<<"We've got to put\na ";
cout<<"lot of money into \nchanging";
cout<<" behavior."<<endl<<"B.G.";
return 0;
}</pre>
```

```
Answer Key:
```

```
We've got to put
    a lot of money into
    changing behavior.
#include <iostream>
B.G.
    using namespace std;
    int main()
    {
        double num = 0;
        double weight = 0;
        while (weight < 100) {
(b)
             cout <<"Please enter weight\n";</pre>
             cin >> weight;
             num += weight;
        }
        cout << num << endl;</pre>
        return 0;
    }
```

Answer Key:

```
Please enter weight
   Please enter weight
   Please enter weight
   #75clude <iostream>
   using namespace std;
   int main(){
        int i, j;
        for (i = 1; i <= 5; i++){
            for (j = 0; j < i; j++){</pre>
                 if(j % 2 == 0)
(c)
                     cout << "O";
                 else
                     cout << "X";</pre>
            }
            cout << endl;</pre>
        }
        return 0;
   }
```

```
Answer Key:
```

```
0
0X
0X0
0X0X
0X0X
```

10. (a) Translate the following program into a complete C++ program:

```
#Python Loops, V3
for i in range(0,15,3):
    print(i, '*', i)
```

```
//C++ Loop, V3
#include <iostream>
using namespace std;
int main()
{
    for(int i=0; i<15; i+=3)
        cout << i << " * " << i << endl;
    return 0;
}</pre>
```

(b) The number of Facebook monthly active users grew from ~ 500 million in 2010 to ~ 2500 million (2.5 billion) in 2019. The average annual growth rate can then be estimated as

avgGrowth = $\frac{\%$ growth number-of-years = $\frac{100 \cdot \frac{2500-500}{500}}{2019 - 2010} = 44.4\%$

We can thus estimate an average annual growth: avgGrowth = 44.4%Write a complete C++ program that asks the user for a year greater than 2010 (assume user complies) and prints the estimated number (in millions) of monthly active Facebook users in that year.

Answer Key:

```
//Facebook monthly active users V3
#include <iostream>
using namespace std;
int main()
{
    double past = 500;
    double avgGrowth = past * .444;
    int year = 0;
    cout << "Please enter a year between 2010 and 2019 : ";
    cin >> year;
    double users = (past + (avgGrowth * (year-2010)))/12;
    cout << "The number of monthly active Facebook users in ";
    cout << "is approximately " << users << " millions" << endl;
    return 0;
}
</pre>
```

}