Row:	SEAT:

Mock Final Exam
 CSci 127: Introduction to Computer Science Hunter College, City University of New York

13 December 2022

Exam Rules

- Show all your work. Your grade will be based on the work shown.
- The exam is closed book and closed notes with the exception of an $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ piece of paper filled with notes, programs, etc.
- When taking the exam, you may have with you pens and pencils, and your note sheet.
- You may not use a computer, calculator, tablet, phone, earbuds, or other electronic device.
- Do not open this exam until instructed to do so.

Hunter College regards acts of academic dishonesty (e.g., plagiarism, cheating on examinations, obtaining unfair advantage, and falsification of records and official documents) as serious offenses against the values of intellectual honesty. The College is committed to enforcing the CUNY Policy on Academic Integrity and will pursue cases of academic dishonesty according to the Hunter College Academic Integrity Procedures.

I understand that all cases of academic dishonesty will be reported to the Dean of Students and will result in sanctions.		
Name:		
EmpID:		

ASCITTABLE

Decimal	Hex	Char									
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	
1	1	[START OF HEADING]	33	21	!	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22	"	66	42	B	98	62	b
3	3	[END OF TEXT]	35	23	\#	67	43	C	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	\%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	\&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	1	72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	A	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	B	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	I
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E	,	78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	o
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	p
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	s
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	y
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	\{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5 C	1	124	7 C	1
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D]	125	7D	\}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	\wedge	126	7E	\sim
31	$1 F$	[UNIT SEPARATOR]	63	3F	?	95	5F	-	127	7F	[DEL]

1. (a) Fill in the code below to produce the Output on the right:
```
seasons = "Spring,Summer,Autumn,Winter"
    i. spring_summer =
        for s in spring_summer:
        print(\square)
    ii. summer_winter = }
        for s in summer_winter:
        print(\square)
```


Output:

spring
summer

Output:
SUMMER
WINTER
(b) Consider the following shell commands:
\$ pwd
/usr/student
\$ ls
covid.csv grades.csv happy.py hello.py
i. What is the output for:
\$ mkdir projects
\$ mv *py projects
\$ cd projects
\$ ls
Output:
\square
ii. What is the output for:

Output:

\$ pwd

Output:

```
$ cd ..
$ ls | grep csv
```

\square
2. (a) Select the color corresponding to the rgb values below:
i. $\mathrm{rgb}=(55,55,55)$
\square black\square whitegraypurple
ii. $\mathrm{rgb}=\mathrm{\#} \mathrm{\# AB0000} "$black
\square red
\square whitegraypurple
iii. $\mathrm{rgb}=(0,0,0)$
\qquad black $\quad \square$ redwhitegraypurple
iv. What is the binary number equivalent of decimal number 45 ?

v. What is the Decimal number equivalent to Hexadecimal AC?

Hexadecmal AC = Decimal \square
(b) Given the list fruits below, fill in the code to produce the Output on the right:
fruits = ['apple', 'bananna', 'coconut', 'dragon fruit', 'elderberry']
i.

Output:

> | a | b | c | d |
| :--- | :--- | :--- | :--- |
| a | b | c | d |

ii.

Output:
$y t e$

Output:
import numpy as np
import matplotlib.pyplot as plt
iii. img = np.ones ($(10,10,3)$)

plt.imshow(img) plt.show()
3. (a) What is the value (True/False):

```
    in1 = True
    in2 \(=\) False
    out \(=\) not in1 or in2
    in1 = False
    in2 = True
    in3 \(=\) False
    out \(=\) not (in1 and not in2) or in3
    in1 = True
    in2 = False
    in3 \(=\) not in1 or in2
    out \(=\) not in1 and not in3
\(\square\) True False
    True
```

```False
iii.
```

TrueFalse
iv.

in1 = True
in2 = True
in3 = False

False
(b) Draw a circuit that implements the logical expression:

```
in1 and not in2 or (in1 and in2 or not in3)
```

4. Consider the following functions:
```
def count(mylist, target): def equal(a, b):
    num_occur = 0
    for num in mylist:
        if equal(num, target):
            num_occur += 1
    return num_occur
```

```
    return a == b
```

 return a == b
    ```
def main():
```

def main():
mylist = [1, 6, 5, 7, 7]
mylist = [1, 6, 5, 7, 7]
print(count(mylist, 6))

```
    print(count(mylist, 6))
```

(a) What are the formal parameters for equal()? \square

(b) What are the actual parameters for count ()?
(c) How many calls are made to equal() after calling main()?

(d) What is the output after calling main()?

i. Output:

\square
5. Design an algorithm that, given an image, outputs an image that make each pixel its complement. For a pixel with color (r, g, b), its complement color is (1-r, 1-g, 1-b). For example, if a pixel is 100% red, that is, $(1,0,0)$, then its complementary color is $(0,1,1)$.
\square

Input:

Output:

Design Pattern:

Find MinFind MaxFind AllPrincipal Mechanisms (select all that apply):
\square Single Loop
\square Nested Loop
\square Conditional (if/else) statementIndexing / Slicingsplit()groupby()

Process (as a concise and precise LIST OF STEPS / pseudocode):
(Assume libraries have already been imported.)
\square
6. Consider the courses_training.csv dataset that reports training courses offered in NY state. A snapshot given in the image below:

| Organization Borough | course name Cost Total | Duration | |
| :--- | :--- | ---: | ---: |
| 1st Choice Cé Brooklyn | Home Healtr | 550 | 83 |
| A.L.M. Secur Brooklyn | 8 HOUR PRE | 500 | 27 |
| A.L.M. Secur Brooklyn | 16 HOUR OJ | 822 | 20 |
| ACCESS INST Queens | ESL (Full Pro | 4000 | 750 |
| ACCESS INST Queens | Home Healtr | 750 | 83 |
| ACCESS INST Queens | Medical Assi | 6000 | 600 |

Fill in the Python program below:
\#Import the libraries for data frames.
\square
\#Read input data into data frame:
\square
\#Calculate hourly_rate by dividing Cost Total by Duration (in hours)
\square
\#Groups the data by Borough to extract data in Queens.
\square
\#Print the minimum, maximum, and average hourly_rate of all training courses in Queens.
\square
7. Write a complete Python program that prompts the user for the name of a .csv file. Suppose column name of longitude is Longitude and column name for latitude is Latitude and generates an interactive .html map with markers found at each geographical location extrated from the .csv file.
\#Import the packages for dataframes and for generating html maps
\square
\#Ask user for the name of csv file and store in variable in_file \#Read the csv file into a dataframe and store it in variable df
\#Create a map and store in variable map
\square
\#Loop through all the rows in the dataframe, create a marker with \#values found in columns lat and long, add marker to the map
\square
\#Save the map to file named map.html
8. (a) What does the MIPS program below print:

Output:

(b) Modify the program to print out 6 consecutive letters in decreasing order ('Z' down to 'U'). Shade in the box for each line that needs to be changed and rewrite the instruction below.ADDI \$sp, \$sp, -4 \# Set up stackADDI \$t0, \$zero, 97 \# Set \$t0 at 97 (a)ADDI \$s2, \$zero, 3 \# Use to test when you reach 3SETUP: SB \$t0, $0(\$ \mathrm{sp})$ \# Next letter in \$toADDI \$sp, \$sp, 1 \# Increment the stackADDI \$s2, \$s2, -1 \# Decrement the counter by 1ADDI \$t0, \$t0, 2 \# Increment the letter by twoBEQ \$s2, \$zero, DONE \# Jump to DONE if s2 == 0J SETUP \# Else, jump back to SETUPDONE: ADDI \$t0, \$zero, 0 \# Null (0) to terminate stringSB \$t0, O(\$sp) \# Add null to stackADDI \$sp, \$sp, -3 \# Set up stack to printADDI \$v0, \$zero, 4
\# 4 is for print stringADDI \$a0, \$sp, 0
\# Set \$a0 to stack pointer
syscall
\# Print to the log
9. Fill in the $\mathrm{C}++$ programs below to produce the Output on the right.

```
    #include <iostream>
    using namespace std;
    int main()
{
    for(int i = 7; i <= \square ;
(a) \(\square\) ) \{
            cout << i+2 << endl;
    }
    return 0;
}
#include <iostream>
using namespace std;
int main()
{
    int count = 20;
    int num = 10;
```


Output:

```
2010
156
102
Output:
```

```
#include <iostream>
```

\#include <iostream>

```
#include <iostream>
using namespace std;
using namespace std;
using namespace std;
int main(){
int main(){
int main(){
(c)
(b)
```



```
        cout << count << " " << num << endl;
    102
        count -= 5;
        num -= 4;
    }
    return 0;
}
(c) for (int i = 9; }\square\mathrm{ ; i--){
(c) for (int i = 9; }\square\mathrm{ ; i--){
(c) for (int i = 9; }\square\mathrm{ ; i--){
        cout << "Keep going!" << endl;
        cout << "Keep going!" << endl;
        cout << "Keep going!" << endl;
    }
    }
    }
    return 0;
    return 0;
    return 0;
}
```

}

```
}
```

Keep going!
Keep going! Keep going! Keep going!
Keep going!
Keep going!
Keep going!
Keep going!
Keep going!
10. (a) Translate the following python program into a complete $\mathbf{C}++$ program:

```
for i in range(1, 10):
    for j in range(1, i+1):
        print(i*j, end=' -')
    print()
```

//include library and namespace
\square
//main function signature
\square
\{
//outer loop line
\square
\{
//inner loop line
\square
//loop body
\square
\}
//return
\square
\}
(b) One gallon is 3.78541 liters, it is also equal to 128 oz .

Write a complete $\mathbf{C}++$ program that asks the user for the number of gallons and prints the corresponding number of liters and oz.
//include library and namespace
//main function signature
\square
\{
//initialize variables
\square
//obtain input
\square
//calculate conversions
\square
//output conversions
\square
//return
\square
\}

