Answer Key:

Row:	SEAT:

Final Exam F22 V2
 CSci 127: Introduction to Computer Science Hunter College, City University of New York

December 19, 2022

Exam Rules

- Show all your work. Your grade will be based on the work shown.
- The exam is closed book and closed notes with the exception of an $81 / 2$ " $\times 11$ " piece of paper filled with notes, programs, etc.
- When taking the exam, you may have with you pens and pencils, and your note sheet.
- You may not use a computer, calculator, tablet, phone, earbuds, or other electronic device.
- Do not open this exam until instructed to do so.

Hunter College regards acts of academic dishonesty (e.g., plagiarism, cheating on examinations, obtaining unfair advantage, and falsification of records and official documents) as serious offenses against the values of intellectual honesty. The College is committed to enforcing the CUNY Policy on Academic Integrity and will pursue cases of academic dishonesty according to the Hunter College Academic Integrity Procedures.

I understand that all cases of academic dishonesty will be reported to the Dean of Students and will result in sanctions.		
Name:		
EmpID:		

ASCITTABLE

Decimal	Hex	Char									
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	
1	1	[START OF HEADING]	33	21	!	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22	"	66	42	B	98	62	b
3	3	[END OF TEXT]	35	23	\#	67	43	C	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	\%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	\&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	1	72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	A	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	B	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	I
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E	,	78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	o
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	p
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	s
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	y
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	\{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5 C	1	124	7 C	1
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D]	125	7D	\}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	\wedge	126	7E	\sim
31	$1 F$	[UNIT SEPARATOR]	63	3F	?	95	5F	-	127	7F	[DEL]

1. (a) Fill in the code below to produce the output on the right:
```
weather = "Cloudy+Rain+Sunny+Snow+Windy"
    i. sunny = weather[ }
    print(sunny)
    Answer Key:
    sunny = weather[12:17]
    or
    sunny = weather[-16:-11]
    ii. rain_snow = 
    for s in rain_snow:
        print(\square)
        Output:
    Sunny
    Output:
    RAIN
    SNOW
```


Answer Key:

```
    rain_snow = weather.split('+')[1::2]
    for s in rain_snow:
        print(s.upper())
```

(b) Consider the following shell commands:
\$ pwd
/usr/staff
\$ ls
a.out p1_hello.py p44_flower.py p60_binary.cpp
i. What is the output for:
\$ mkdir programs
\$ mv *.py programs
\$ rm a.out
\$ ls
Output:
\square

```
Answer Key:
p60_binary.cpp programs
```

ii. What is the output for:

\$ cd programs
 \$ pwd

Answer Key:
/usr/staff/programs

iii. What is the output for:

```
$ cd ..
$ ls | grep cpp | wc -l
```


Answer Key:

Output:

\square

Output:

\square

1
2. (a) Select the color corresponding to the rgb values below:
i. $\mathrm{rgb}=(0,0,0)$
\square black
\square redcyangraypurple
ii. $\mathrm{rgb}=\mathrm{F}=0000 \mathrm{AB} "$
red greenblueblackwhite
iii. What is rgb values for purple?$0,0,1$$0,1,1$$1,0,0$$1,0,1$
$1,1,0$
iv. What is the binary number equivalent of decimal number 55 ?

Decimal 55 = Binary

v. What is the Decimal number equivalent to Hexadecimal 3C?

Hexadecimal 3C = Decimal \square

Answer Key:

i. $\mathrm{rgb}=(0,0,0)$
\mathbf{X} black $\quad \square$ redcyangraypurple
ii. $\mathrm{rgb}=$ "\#0000AB"\square red green $\quad \mathbf{X}$ blueblackwhite
iii. What is rgb values for purple?$0,0,1$$0,1,1$$1,0,0$

X 1, 0, 1$1,1,0$
iv. What is the binary number equivalent of decimal number 55 ?
2 | 55
+---

2	27	1

 +---
 \begin{tabular}{l|ll}
 2 \& 13 \& 1
\end{tabular}

 +---
 2 | 61

2 | 30
+---

 2 \begin{tabular}{l|l}
 1 \& 1
\end{tabular}

 +---
 01
 Decimal $50=$ Binary \quad| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

v. What is the Decimal number equivalent to Hexadecimal 3C?

Hexadecimal $3 \mathrm{C}=3^{*} 16+12=3 * 16+12=60$ | 6 | 0 |
| :--- | :--- |

(b) Given the list fruits below, fill in the code to produce the Output on the right:

Answer Key:

```
fruits = ['apple', 'banana', 'coconut', 'dragon fruit', 'elderberry']
for j in range(4, -1, -2):
    print(fruits[j])
You can also replace 4 by len(fruits)-1.
```

import numpy as np
import matplotlib.pyplot as plt

plt.imshow(img)
plt.show()
ii.

```
Answer Key:
import numpy as np
import matplotlib.pyplot as plt
img = np.ones( (10, 10, 3) )
img[5:, 5:] = 0
plt.imshow(img)
plt.show()
```


3. (a) What is the value (True/False):

```
in1 = True
i. in2 = False
out = not in1 and not in2
```False
 Answer Key:
 out = False
in1 = True
in2 = False
in3 = False
out \(=\) not (not in1 and not in2) or in3

Answer Key:
out = True
 in1 = True
 in2 = False
 in3 \(=\) in1 or not in2
 out \(=\) not in1 or in2 or not in3False

Answer Key: out = False
iv.

in1 = True
in2 = False
in3 = True
TrueFalse

\section*{Answer Key:}
out \(=\) False
(b) Draw a circuit that implements the logical expression:
```

(not in1 or in2) and (in1 or (in2 and not in3))

```

4. Consider the following functions:
```

def count(mylist, target):
num_occur = 0
def larger(s, t):
return s > t
for num in mylist:
if larger(num, target):
num_occur += 1
return num_occur
def main():
brr = [3, 6, -5, 9, -2]
print(count(brr, 3))

```
(a) What are the formal parameters for larger ()? \(\square\)
 Answer Key: s, t
(b) What are the actual parameters for count ()? \(\square\)

Answer Key: brr, 3
(c) How many calls are made to larger() after calling main()?

\section*{Answer Key: 5}
(d) What is the output after calling main()?

\section*{Output:}
\(\square\)

\section*{Answer Key:}

2
5. Design an algorithm that asks the user for the name of a text file containing a grid of numbers and loads it into a 2D array of integers(think like an image without the color channel) and a threshold. The program outputs the sum of all elements in the grid that are smaller than the threshold. For example, suppose the grid has values
[\(\left.\begin{array}{ll}1 & 2\end{array}\right]\)
\(\left[\begin{array}{ll}3 & 4\end{array}\right]\)
and the given threshold is 3 . Then the sum is \(1+2=3\).

\section*{Libraries:}
\(\square\)

\section*{Answer Key: numpy}

\section*{Input:}
\(\square\)

Answer Key: the name of the text file, a number as a threshold
Output: \(\square\)

Answer Key: The total of all elements in the grid that are smaller than the threshold. Design Pattern:
\(\square\) Find MinFind Max
\(\square\) Find All

Answer Key: \(\quad \square\) Find Min \(\quad \square\) Find Max \(\quad\) F Find All
Principal Mechanisms (select all that apply):
\(\square\) Single LoopIndexing / SlicingNested Loop
\(\square\) split()
\(\square\) Conditional (if/else) statement
\(\square\) groupby ()

\section*{Answer Key:}
\begin{tabular}{lcc}
\(\square\) Single Loop & X Nested Loop & X Conditional (if/else) statement \\
XIndexing / Slicing & \(\square\) split() & \(\square\) groupby ()
\end{tabular}

Process (as a concise and precise LIST OF STEPS / pseudocode):
(Assume libraries have already been imported.)
\(\square\)

\section*{Answer Key:}
(a) Ask the user for text file name
(b) Ask the user for a number as a threshold.
(c) Load data into grid.
(d) Set total to be zero.
(e) Use a nested loop to consider every element in grid, looping for rows in outer loop and columns in inner loop if the element is smaller than the threshold, add the element to total.
(f) Report total.

An implementation of the above code is as follows (This part is optional and will not be counted towards grading).
```

\#suppose airtravel.csv has the following contents.
\#"Month", "1958", "1959", "1960"
\#"JAN", 340, 360, 417
\#"FEB", 318, 342, 391
\#"MAR", 362, 406, 419
\#"APR", 348, 396, 461
\#"MAY", 363, 420, 472
\#"JUN", 435, 472, 535
\#"JUL", 491, 548, 622
\#"AUG", 505, 559, 606
\#"SEP", 404, 463, 508
\#"OCT", 359, 407, 461
\#"NOV", 310, 362, 390

```
```

\#"DEC", 337, 405, 432
import numpy as np
in_file = input("Enter input file name: ")
threshold = int(input("Enter a threshold: "))
grid = np.loadtxt(in_file, skiprows=1, delimiter=',', usecols=range(1,4))
\#skip the first row, which is column head
\#skip the first column, since it is row head
\#print(grid)
numRows = grid.shape [0]
numCols = grid.shape[1]
total = 0
for i in range(numRows):
for j in range(numCols):
if grid[i,j] < threshold:
total += grid[i,j]
print(total)

```
6. Consider the violations.csv dataset that reports violations issued by Business Integrity Commission for companies operating in the trade waste industry. A snapshot given in the image below:
\begin{tabular}{|l|r|r|l|}
\hline VIOLATION ^ VIOLATION ACCOUNT STATE & FINE AMOUNT NUMBER OF COUNTS DESCRIPTION OF RULE \\
\hline TWC-219653 NJ & 500 & 1 & Removed collected or disposed \\
\hline TWC-218679 NJ & 1000 & 1 & Failed to timely notify Commiss \\
\hline TWC-211037 NY & 2500 & 1 & Removed collected or disposed \\
\hline TWC-221854 NY & & 1 & Removed collected or disposed \\
\hline TWC-218495 NY & 0 & 1 & Failed to separate recyclable ma \\
\hline
\end{tabular}

Assume we write import pandas as pd already. Fill in the Python program below:
\#Read input data into data frame:
\(\square\)
\#Groups the data by 'VIOLATION ACCOUNT STATE' to extract data in NY.
\(\square\)
\#Print the maximum of FINE AMOUNT in NY.
\(\square\)
\#Print the most common (aka top) FIVE rules violated.
\#Hint: look at 'DESCRIPTION OF RULE' and value_counts method.
\(\square\)

\section*{Answer Key:}
```

\#To test, download https://data.cityofnewyork.us/Business/BIC-Issued-Violations
/upii-frjc,
\#shorten the file name as violations.csv.
import pandas as pd
df = pd.read_csv("violations.csv")
print(df["NUMBER OF COUNTS"].mean())
ny = df.groupby("VIOLATION ACCOUNT STATE").get_group("NY")
print(ny['FINE AMOUNT'].max())
print(df["DESCRIPTION OF RULE"].value_counts()[:5])

```
7. Complete the following code in Python.

Define sameFreq function, for strings s1 and s2, char ch, see whether s1 and s2 have the same number of occurrences of ch. For example, the return of sameFreq('abc', 'acd', 'a') is true, but the return of sameFreq('abc', 'acd', 'b') is false.

Define allSameFreq function, for strings s1, s2, and s3, check whether s1 and s2 have the same number of occurrences of each letter in s3. For example, allSameFreq('abcd', 'bcae', 'abc') returns true, but allSameFreq('abcd', 'bcae', 'abd') returns false.
Hints: for the first letter in s3 that does not have the same number of occurrences in s1 and s2, can you stop and know what allSameFreq function should return immediately? What if after testing every letter in s3, and each one has the same number of occurrences in s1 and s2?
```

Answer Key:
def sameFreq(s1, s2, ch):
return s1.count(ch) == s2.count(ch)
def allSameFreq(s1, s2, s3):
for ch in s3:
if not sameFreq(s1, s2, ch):
return False
return True
def main():
print(allSameFreq('abcd', 'bcae', 'abc'))
print(allSameFreq('abcd', 'bcae', 'abd'))
if __name__ == '__main__':
main()

```
8. (a) What does the MIPS program below print:

Output:
\(\square\)
```

Answer Key:
egikm

```
(b) Modify the program to print out string " 975 ". Shade in the box for each line that needs to be changed and rewrite the instruction below. Warning: you need to modify from the above code. Need to use j and beq commands.ADDI \$sp, \$sp, -6 \# Set up stackADDI \$t0, \$zero, 101 \# Set \$t0 at 102 ('e')ADDI \$s2, \$zero, 5 \# Use to test when you reach 5SETUP: SB \$t0, O(\$sp) \# Next letter in \$t0ADDI \$sp, \$sp, 1 \# Increment the stackADDI \$s2, \$s2, -1 \# Decrement the counter by 1

ADDI \$t0, \$t0, 2 \# Increase the letter by 2BEQ \$s2, \$zero, DONE \# Jump to DONE if s2 == 0J SETUP \# Else, jump back to SETUPDONE: ADDI \$t0, \$zero, 0 \# Null (0) to terminate stringSB \$t0, O(\$sp) \# Add null to stackADDI \$sp, \$sp, -5 \# Set up stack to printADDI \$v0, \$zero, 4
\# 4 is for print stringADDI \$a0, \$sp, 0syscall
\# Set \(\$ \mathrm{aO}\) to stack pointer
\# Print to the log
```

Answer Key:
ADDI \$sp, \$sp, -4 \# Set up stack
ADDI \$t0, \$zero, 57 \# Set \$t0 at 57 ('9')
ADDI \$s2, \$zero, 3 \# Use to test when you reach 3
SETUP: SB $t0, O($sp) \# Next letter in \$t0
ADDI \$sp, \$sp, 1 \# Increment the stack
ADDI \$s2, \$s2, -1 \# Decrement the counter by 1
ADDI \$t0, \$t0, -2 \# Decrease the letter by 3
BEQ \$s2, \$zero, DONE \# Jump to DONE if s2 == 0
J SETUP \# Else, jump back to SETUP
DONE: ADDI \$t0, \$zero, 0 \# Null (0) to terminate string
SB $t0, O($sp) \# Add null to stack
ADDI \$sp, \$sp, -3 \# Set up stack to print
ADDI \$v0, \$zero, 4 \# 4 is for print string
ADDI \$a0, \$sp, 0 \# Set \$a0 to stack pointer
syscall \# Print to the log

```
9. Fill in the \(\mathrm{C}++\) programs below to produce the Output on the right.
```

\#include <iostream>
using namespace std;
int main()
{

```

```

        cout << i/2 << endl;
    }
    return 0;
    }

```

\section*{Answer Key:}
```

\#include <iostream>
using namespace std;
int main()
{
for (int i = 2; i <= 14; i+=4)
//Warning: do not add ; right after for-head,
//or the loop body is empty.
//That is,
//the following writing is WRONG
//for (int i = 2; i <= 14; i+=4) ;
//We say, each statement in C++ ends with ;
//we do not say, each line in C++ ends with ;
{ //this pair of curly braces can be omitted,
//since the loop body has only statement
cout << i / 2 << endl;
}
return 0;
}

```
```

    #include <iostream>
    using namespace std;
    int main()
    {
int size = 5;
for (int i = 0; i < size; i++)
{
for (int j = 0; j < i; j++)
cout << " ";
for (int j = 0; j < size - i; j++)
cout << "*";
cout << endl;
}
return 0;
}

```
 Answer Key:
 \(* * * * *\)
\(* * * *\)
\(* * *\)
\(* *\)
\(*\)
 \#include <iostream>
 using namespace std;
 int main()\{
 int \(m=2\);
 int \(\mathrm{n}=6\);
 while \((\mathrm{m}+\mathrm{n}<=\square)\{\)
(c)
 cout << m << " " << n << endl;

\section*{Output:}

26
75
124
173

//update m n--;
 \}
 return 0;
\}

\section*{Answer Key:}
\(\mathrm{m}+\mathrm{n}<=20\)
\(\mathrm{n}+=5\); or
\(\mathrm{n}=\mathrm{n}+5\);

A complete \(\mathrm{C}++\) code is as follows.
```

\#include <iostream>
using namespace std;
int main()
{
int m = 2;
int n = 6;
while (m + n <= 20)
{
cout << m << " " << n << endl;
m += 5;
n --;
}
return 0;
}

```
10. (a) Translate the following python program into a complete \(\mathbf{C}++\) program:
```

num = -1
while num < 0 or num > 100:
num = int(input("Enter an integer in [0, 100]: "))
print("num =", num)

```
//include library and namespace
\(\square\)

\section*{//main function signature}
\(\square\)
\{
//initialization
//loop line
\begin{tabular}{|l|}
\hline
\end{tabular}
//loop body
\{
\(\square\)
\}
//print num
\(\square\)
//return
\}
```

Answer Key:
\#include <iostream>
using namespace std;
int main()
{
int num = -1;
while (num < 0 || num > 100)
{
cout << "Enter an integer in [0, 100]: ";
cin >> num;
}
cout << "num = " << num << endl;
return 0;
}

```
(b) Write a \(\mathrm{C}++\) code. Declare variables for lb and kilograms (kg). Declare variable for choice. If choice is 1 , then enter number of lbs, and convert it to kilograms (kgs) and print the result out. Otherwise, enter number of kgs, and convert it to lbs and print the result out.
\(1 \mathrm{lb}=0.45 \mathrm{~kg}\)
\(1 \mathrm{~kg}=1 / 0.45 \mathrm{lbs}\)
Some sample input/output is as follows.
```

Enter a choice: 1
Enter number of lbs: 2
2 lbs = 0.9 kgs
Enter a choice: 2
Enter number of kgs: 3
3 kgs = 6.66667 lbs

```

Just finish the code in main function. No need to write include library and main function signature and return statement.
//declare variables lbs and kgs (for kilograms).
\(\square\)
//declare and obtain input for variable choice.
\(\square\)
//Write if-statement when choice is 1 , //input lbs, convert to kgs (kilograms), and output result.
\(\square\)
//Write else-statement, input kgs, convert to lbs, and output result.
```

Answer Key:
\#include <iostream>
using namespace std;
int main()
{
//declare variables for lbs and kgs.
double lbs;
double kgs;
//declare and input for variable choice
int choice;
cout << "Enter a choice: ";
cin >> choice;
//when choice is 1
if (choice == 1)
{
cout << "Enter number of lbs: ";
cin >> lbs;
kgs = lbs * 0.45;
cout << lbs << " lbs = " << kgs << " kgs" << endl;
}
else //when choice is not 1
{
cout << "Enter number of kgs: ";
cin >> kgs;
lbs = kgs / 0.45;
cout << kgs << " kgs = " << lbs << " lbs" << endl;
}
return 0;
}

```

\section*{SCRATCH PAPER}

\section*{SCRATCH PAPER}```

