Row:	SEAT:

FINAL EXAM F22 V2 CSci 127: Introduction to Computer Science Hunter College, City University of New York

December 19, 2022

Exam Rules

- Show all your work. Your grade will be based on the work shown.
- The exam is closed book and closed notes with the exception of an 8 1/2" x 11" piece of paper filled with notes, programs, etc.
- When taking the exam, you may have with you pens and pencils, and your note sheet.
- You may not use a computer, calculator, tablet, phone, earbuds, or other electronic device.
- Do not open this exam until instructed to do so.

Hunter College regards acts of academic dishonesty (e.g., plagiarism, cheating on examinations, obtaining unfair advantage, and falsification of records and official documents) as serious offenses against the values of intellectual honesty. The College is committed to enforcing the CUNY Policy on Academic Integrity and will pursue cases of academic dishonesty according to the Hunter College Academic Integrity Procedures.

I understand that all cases of academic dishonesty will be reported to the															
Dean of Students and will result in sanctions.															
Name:	Name:														
EmpID:															
Email:															
Signature:															

	١٢																																1
	Chai		a	q	U	σ	Ð	÷	0	ء			×	_	Ξ	c	0	٩	σ	-	S	Ļ	b	>	8	×	>	N	Ļ		~	ł	[DEL]
	Hex	60	61	62	63	64	65	99	67	68	69	6A	6B	9C	6D	6Е	6F	70	71	72	73	74	75	76	77	78	79	7A	7B	7C	7D	7E	7F
	mal																																
	Decima	96	97	98	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
	harl																																
	O	0	۷	8	U	۵	ш	ш.	ט	T	-		¥	-	Σ	z	0	•	Ø	2	S	F	D	>	3	×	۲	Ν	-	-		<	1
	I Hex	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	50	51	52	53	54	55	56	57	58	59	5A	5B	5C	5D	5E	5F
	Decimal																																
	De(64	65	99	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	06	91	92	63	94	95
	Char	[SPACE]					. 0																										
							%		-	-	^	*	+	-	ľ	ľ	-	0	-	2	m	-					o			v		۸	-
	al Hex	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	30	31	32	33	34	35	36	37	38	39	ЗA	3B	ЭС	BD	ЗE	ЗF
	ecima																																
$\mathbf{\Omega}$	١De	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
٢			_			[NOI													_	[[[LEDGE]	E]	DCK]						_	RJ	
			START OF HEADING]	EXT]	E	END OF TRANSMISSION		DGE]			L TABJ		AB]	_	[CARRIAGE RETURN]			SCAPE	DEVICE CONTROL 1	DEVICE CONTROL 2	DEVICE CONTROL 3	DEVICE CONTROL 4]	NEGATIVE ACKNOWLEI	SYNCHRONOUS IDLE]	ENG OF TRANS. BLOCK		[MUIC			ATOR]	GROUP SEPARATOR]	RECORD SEPARATOR]	ATOR]
•	ar		RT OF H	START OF TEXT	END OF TEXT	OF TRA	ENQUIRY	ACKNOWLEDGE]		BACKSPACE	HORIZONTAL TAB	[LINE FEED]	VERTICAL TAB	FORM FEED]	RIAGE F	SHIFT OUT]	SHIFT IN]	DATA LINK ESCAPE	ICE CON	ICE COV	ICE CON	ICE CON	ATIVE A	CHRON	OF TR/	CEL]	END OF MEDIUM]	SUBSTITUTE]	APE]	FILE SEPARATOR	UP SEP	ORD SE	UNIT SEPARATOR
	Char	[NULL]	[STAF	[STAF	[END	[END	[ENQ	[ACK	[BELL]	[BAC	[HOR	[LINE	[VER]	[FOR	[CAR	[SHIF	[SHIF	[DAT [,]	[DEV	[DEV	[DEV	[DEV	[NEG.	[SYNt	[ENG	[CANCEL]	[END	[SUB	[ESCAPE]	[FILE	[GRO	[REC([INN]
ASCII TA	Нех	0	1	2	m	4	ъ	9	7	ω	6	۷	В	U	۵	ш	ш	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F
S	mal																																
۷	Decimal	0	1	2	m	4	2	9	7	ω	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

(Image from wikipedia commons)

1. (a) Fill in the code below to produce the output on the right:

weather = "Cloudy+Rain+Sunny+Snow+Windy"

<pre>i. sunny = weather[print(sunny) </pre>	Output: Sunny
<pre>ii. rain_snow = for s in rain_snow: print()</pre>	Output: RAIN SNOW

(b) Consider the following shell commands:

```
$ pwd
/usr/staff
$ ls
a.out p1_hello.py p44_flower.py p60_binary.cpp
```

i. What is the output for:
 \$ mkdir programs
 \$ mv *.py programs
 \$ rm a.out
 \$ ls

- ii. What is the output for:
 - \$ cd programs
 \$ pwd

iii. What is the output for:

\$ cd .. \$ ls | grep cpp | wc -1

Output:		

Output:

2.	(a)	Sele	ct the color correspo	nding to the	rgb values bel	ow:	
			rgb = (0, 0, 0) □ black □ r	ed 🗆] cyan	□ gray	\Box purple
			rgb = "#0000AB" □ red □ gre	en 🗆] blue	\Box black	□ white
			What is rgb value $\Box 0, 0, 1$ \Box	s for purpl $0, 1, 1$		\Box 1, 0, 1	\Box 1, 1, 0
		iv.	What is the binary i	umber equiv	valent of decim	al number 55?	
			Decimal 55 = Bina	ry			
		v.	What is the Decimal	number equ	uvalent to Hex	adecimal 3C?	
			Hexadecimal 3C =	Decimal			
	(b)	Give	en the list fruits be	low, fill in th	ne code to proc	luce the Output	on the right:
		fru	its = ['apple', 'b	oanana', 'c	oconut', 'dr	agon fruit',	'elderberry']
		i.	for j in range(🗌)	: Output: elderberry]
			print(fruits[)		coconut	
						apple	
						Output:	
			import numpy as	-		0-	
		::	<pre>import matplotli img = np.ones((</pre>		s plt	2 -	
		ii.		10,10,07)		6-	
			img[,]	= 0	8-	
			<pre>plt.imshow(img) plt.show()</pre>			0 2	4 6 8
						_	
						Output: ₀-	
			<pre>import numpy as import motpletli</pre>	-		2 -	
		iii.	<pre>import matplotli img = np.ones((</pre>		s pro	4 -	
				-	0	6 -	
			<pre>img[, l plt.imshow(img)</pre>]	= 0	8 -	
			plt.show()			0 2	4 6 8

(b) Draw a circuit that implements the logical expression:

4. Consider the following functions:

(a) What are the formal parameters for larger()?

ing main()?		

(b) What are the actual parameters for count()?

- (c) How many calls are made to larger() after calling main()?
- (d) What is the output after calling main()?

Output:

5.	. Design an algorithm that asks the user for the name of a text file containing a grid of numbe	
	and loads it into a 2D array of integers(think like an image without the color channel) and threshold. The program outputs the sum of all elements in the grid that are smaller than the	
	threshold. For example, suppose the grid has values	IC
	[[1 2]	
	[3 4]]	
	and the given threshold is 3. Then the sum is $1 + 2 = 3$.	-
	Libraries:	
		٦
	Input:	
		٦
	Output:	
	Design Pattern:	
	\Box Find Min \Box Find Max \Box Find All	
	Principal Mechanisms (select all that apply):	
	\Box Single Loop \Box Nested Loop \Box Conditional (if/else) statement	
	□ Indexing / Slicing □ split() □ groupby()	
	Process (as a concise and precise LIST OF STEPS / pseudocode):	
	(Assume libraries have already been imported.)	
]

6. Consider the violations.csv dataset that reports violations issued by Business Integrity Commission for companies operating in the trade waste industry. A snapshot given in the image below:

VIOLATION N	VIOLATION ACCOUNT STATE	FINE AMOUNT	NUMBER OF COUNTS	DESCRIPTION OF RULE
TWC-219653	NJ	500	1	Removed collected or disposed (
TWC-218679	NJ	1000	1	Failed to timely notify Commiss
TWC-211037	NY	2500	1	Removed collected or disposed (
TWC-221854	NY		1	Removed collected or disposed (
TWC-218495	NY	0	1	Failed to separate recyclable ma

Assume we write import pandas as pd already. Fill in the Python program below:

#Read input data into data frame:

df =

#Print the average value in column 'NUMBER OF COUNTS'.

#Groups the data by 'VIOLATION ACCOUNT STATE' to extract data in NY.

ny =

#Print the maximum of FINE AMOUNT in NY.

#Print the most common (aka top) FIVE rules violated.
#Hint: look at 'DESCRIPTION OF RULE' and value_counts method.

7. Complete the following code in Python.

Define sameFreq function, for strings s1 and s2, char ch, see whether s1 and s2 have the same number of occurrences of ch. For example, the return of sameFreq('abc', 'acd', 'a') is true, but the return of sameFreq('abc', 'acd', 'b') is false.

Define allSameFreq function, for strings s1, s2, and s3, check whether s1 and s2 have the same number of occurrences of each letter in s3. For example, allSameFreq('abcd', 'bcae', 'abc') returns true, but allSameFreq('abcd', 'bcae', 'abd') returns false.

Hints: for the first letter in s3 that does not have the same number of occurrences in s1 and s2, can you stop and know what allSameFreq function should return immediately? What if after testing every letter in s3, and each one has the same number of occurrences in s1 and s2?

8. (a) What does the MIPS program below print:

- (b) Modify the program to print out string "975". Shade in the box for each line that needs to be changed and rewrite the instruction below. Warning: you need to modify from the above code. Need to use j and beq commands.
- □ ADDI \$sp, \$sp, -6 # Set up stack

□ ADDI \$t0, \$zero, 101 # Set \$t0 at 102 ('e')

- \Box ADDI \$s2, \$zero, 5 # Use to test when you reach 5
- □ SETUP: SB \$t0, 0(\$sp) # Next letter in \$t0
- □ ADDI \$sp, \$sp, 1 # Increment the stack
- \Box ADDI \$s2, \$s2, -1 # Decrement the counter by 1
- □ ADDI \$t0, \$t0, 2 # Increase the letter by 2
- \Box BEQ \$s2, \$zero, DONE # Jump to DONE if s2 == 0
- □ J SETUP # Else, jump back to SETUP
- □ DONE: ADDI \$t0, \$zero, 0 # Null (0) to terminate string
- \Box SB \$t0, 0(\$sp) # Add null to stack
- □ ADDI \$sp, \$sp, -5 # Set up stack to print
- □ ADDI \$v0, \$zero, 4 # 4 is for print string
- □ syscall # Print to the log

9. Fill in the C++ programs below to produce the Output on the right.

```
#include <iostream>
   using namespace std;
   int main()
                                                                        Output:
   {
                                                                        1
       for(int i = 2; i <=</pre>
                                                      ){
                                                                        3
(a)
                                                                        5
           cout << i/2 << endl;
                                                                        7
        }
       return 0;
   }
   #include <iostream>
   using namespace std;
   int main()
   {
                                                          Output:
       int size = 5;
       for (int i = 0; i < size; i++)</pre>
        {
            for (int j = 0; j < i; j++)
                cout << " ";
(b)
            for (int j = 0; j < size - i; j++)</pre>
                cout << "*";
            cout << endl;</pre>
       }
       return 0;
   }
   #include <iostream>
   using namespace std;
   int main(){
       int m = 2;
                                                          Output:
        int n = 6;
                                                          26
                                                          75
       while ( m + n <= |
                                    ) {
(c)
                                                          12 4
            cout << m << " " << n << endl;
                                                          17 3
                             //update m
            n--;
        }
       return 0;
   }
```

10. (a) Translate the following python program into a **complete C++ program**:

```
num = -1
while num < 0 or num > 100:
    num = int(input("Enter_an_integer_in_[0,_100]:_"))
```

print("num_=", num)

//include library and namespace

{

//initialization

//loop line

(b) Write a C++ code. Declare variables for lb and kilograms (kg). Declare variable for choice. If choice is 1, then enter number of lbs, and convert it to kilograms (kgs) and print the result out. Otherwise, enter number of kgs, and convert it to lbs and print the result out. 1 lb = 0.45 kg

```
1 \text{ kg} = 1 / 0.45 \text{ lbs}
```

Some sample input/output is as follows.

Enter a choice: 1 Enter number of lbs: 2 2 lbs = 0.9 kgs Enter a choice: 2 Enter number of kgs: 3 3 kgs = 6.66667 lbs

Just finish the code in main function. No need to write include library and main function signature and return statement.

//declare variables lbs and kgs (for kilograms).

//declare and obtain input for variable choice.

//Write if-statement when choice is 1,
//input lbs, convert to kgs (kilograms), and output result.

//Write else-statement, input kgs, convert to lbs, and output result.

SCRATCH PAPER

SCRATCH PAPER