Row:	SEAT:

Final Exam F22 V2

CSci 127: Introduction to Computer Science Hunter College, City University of New York

December 19, 2022

Exam Rules

- Show all your work. Your grade will be based on the work shown.
- The exam is closed book and closed notes with the exception of an $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ piece of paper filled with notes, programs, etc.
- When taking the exam, you may have with you pens and pencils, and your note sheet.
- You may not use a computer, calculator, tablet, phone, earbuds, or other electronic device.
- Do not open this exam until instructed to do so.

Hunter College regards acts of academic dishonesty (e.g., plagiarism, cheating on examinations, obtaining unfair advantage, and falsification of records and official documents) as serious offenses against the values of intellectual honesty. The College is committed to enforcing the CUNY Policy on Academic Integrity and will pursue cases of academic dishonesty according to the Hunter College Academic Integrity Procedures.

I understand that all cases of academic dishonesty will be reported to the Dean of Students and will result in sanctions.		
Name:		
EmpID:		

ASCITTABLE

Decimal	Hex	Char									
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	
1	1	[START OF HEADING]	33	21	!	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22	"	66	42	B	98	62	b
3	3	[END OF TEXT]	35	23	\#	67	43	C	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	\%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	\&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	1	72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	A	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	B	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	I
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E	,	78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	o
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	p
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	s
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	y
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	\{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5 C	1	124	7 C	1
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D]	125	7D	\}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	\wedge	126	7E	\sim
31	$1 F$	[UNIT SEPARATOR]	63	3F	?	95	5F	-	127	7F	[DEL]

1. (a) Fill in the code below to produce the output on the right:
```
weather = "Cloudy+Rain+Sunny+Snow+Windy"
    i. sunny = weather[\square]
        print(sunny)
    ii. rain_snow = 
    for s in rain_snow:
        print(\square)
```

Output:
Sunny

Output:
RAIN
SNOW
(b) Consider the following shell commands:
\$ pwd
/usr/staff
\$ ls
a.out p1_hello.py p44_flower.py p60_binary.cpp
i. What is the output for:
\$ mkdir programs
\$ mv *.py programs
Output:
\$ rm a.out
\$ ls \square
ii. What is the output for:

Output:

```
$ cd programs
$ pwd
```

\square
iii. What is the output for:

Output:

```
$ cd ..
$ ls | grep cpp | wc -l
```

\square
2. (a) Select the color corresponding to the rgb values below:
i. $\mathrm{rgb}=(0,0,0)$
\square blackred
cyangraypurple
ii. $\mathrm{rgb}=\mathrm{\#} \# 0000 \mathrm{AB} "$redgreenblueblackwhite
iii. What is rgb values for purple?$0,0,1$$0,1,1$$1,0,0$$1,0,1$1, 1, 0
iv. What is the binary number equivalent of decimal number 55 ?

v. What is the Decimal number equivalent to Hexadecimal 3C?

Hexadecimal 3C = Decimal \square
(b) Given the list fruits below, fill in the code to produce the Output on the right:

```
fruits = ['apple', 'banana', 'coconut', 'dragon fruit', 'elderberry']
```


Output:
elderberry
coconut
apple

Output:

import numpy as np
import matplotlib.pyplot as plt
ii. \quad img $=n p$.ones $((10,10,3))$

plt.imshow(img)
plt.show()
import numpy as np
import matplotlib.pyplot as plt
iii. img = np.ones ($(10,10,3)$)

plt.imshow(img)
plt.show()

Output:

3. (a) What is the value (True/False):
in1 = True
i. in2 = False
out $=$ not in1 and not in2
in1 = True
ii. $\begin{aligned} & \text { in2 }=\text { False } \\ & \text { in3 }=\text { False }\end{aligned}$
ii. $\begin{aligned} & \text { in2 }=\text { False } \\ & \text { in3 }\end{aligned}$
out $=$ not (not in1 and not in2) or in3
in1 = True
iii. in2 = False
in3 = in1 or not in2
out $=$ not in1 or in2 or not in3
\square TrueFalse
iii. in2 $=$ FalseFalse
TrueFalse
iv.

in1 = True
in2 = False
in3 $=$ True
\square True
False
(b) Draw a circuit that implements the logical expression:

4. Consider the following functions:

```
def count(mylist, target): def larger(s, t):
    num_occur = 0
    for num in mylist:
        if larger(num, target):
        num_occur += 1
    return num_occur
```

```
    return s > t
```

 return s > t
    ```
def main():
```

def main():
brr = [3, 6, -5, 9, -2]
brr = [3, 6, -5, 9, -2]
print(count(brr, 3))

```
    print(count(brr, 3))
```

(a) What are the formal parameters for larger ()? \square
\square
(b) What are the actual parameters for count ()?
(c) How many calls are made to larger() after calling main()?

(d) What is the output after calling main()?

Output:

5. Design an algorithm that asks the user for the name of a text file containing a grid of numbers and loads it into a 2 D array of integers(think like an image without the color channel) and a threshold. The program outputs the sum of all elements in the grid that are smaller than the threshold. For example, suppose the grid has values

$$
\left[\begin{array}{ll}
1 & 2
\end{array}\right]
$$

$\left[\begin{array}{ll}3 & 4\end{array}\right]$
and the given threshold is 3 . Then the sum is $1+2=3$.
\square

Input: \square

Output: \square

Design Pattern:

\square Find Min
\square Find Max
\square Find All

Principal Mechanisms (select all that apply):
\square Single Loop
\square Nested Loop
Conditional (if/else) statementIndexing / Slicingsplit()groupby ()

Process (as a concise and precise LIST OF STEPS / pseudocode):
(Assume libraries have already been imported.)
6. Consider the violations.csv dataset that reports violations issued by Business Integrity Commission for companies operating in the trade waste industry. A snapshot given in the image below:

| VIOLATION I VIOLATION ACCOUNT STATE | FINE AMOUNT NUMBER OF COUNTS DESCRIPTION OF RULE | | |
| :---: | :---: | :---: | :---: |
| TWC-219653 NJ | 500 | 1 | Removed collected or disposed ، |
| TWC-218679 NJ | 1000 | 1 | Failed to timely notify Commiss |
| TWC-211037 NY | 2500 | 1 | Removed collected or disposed |
| TWC-221854 NY | | 1 | Removed collected or disposed , |
| TWC-218495 NY | 0 | | Failed to separate recyclable ma |

Assume we write import pandas as pd already. Fill in the Python program below:
\#Read input data into data frame:
\square
\#Print the average value in column 'NUMBER OF COUNTS'.
\square
\#Groups the data by 'VIOLATION ACCOUNT STATE' to extract data in NY.
\square
\#Print the maximum of FINE AMOUNT in NY.
\square
\#Print the most common (aka top) FIVE rules violated.
\#Hint: look at 'DESCRIPTION OF RULE' and value_counts method.
7. Complete the following code in Python.

Define sameFreq function, for strings s1 and s2, char ch, see whether s1 and s2 have the same number of occurrences of ch. For example, the return of sameFreq('abc', 'acd', 'a') is true, but the return of sameFreq('abc', 'acd', 'b') is false.

Define allSameFreq function, for strings s1, s2, and s3, check whether s1 and s2 have the same number of occurrences of each letter in s3. For example, allSameFreq('abcd', 'bcae', 'abc') returns true, but allSameFreq('abcd', 'bcae', 'abd') returns false.
Hints: for the first letter in s3 that does not have the same number of occurrences in s1 and s2, can you stop and know what allSameFreq function should return immediately? What if after testing every letter in s3, and each one has the same number of occurrences in s1 and s2?
8. (a) What does the MIPS program below print:

Output:

(b) Modify the program to print out string " 975 ". Shade in the box for each line that needs to be changed and rewrite the instruction below. Warning: you need to modify from the above code. Need to use j and beq commands.ADDI \$sp, \$sp, -6 \# Set up stackADDI \$t0, \$zero, 101 \# Set \$t0 at 102 ('e')ADDI \$s2, \$zero, 5 \# Use to test when you reach 5SETUP: SB \$t0, 0(\$sp) \# Next letter in \$t0ADDI \$sp, \$sp, 1 \# Increment the stackADDI \$s2, \$s2, -1 \# Decrement the counter by 1ADDI \$t0, \$t0, 2 \# Increase the letter by 2BEQ \$s2, \$zero, DONE \# Jump to DONE if s2 == 0J SETUP \# Else, jump back to SETUPDONE: ADDI \$t0, \$zero, 0 \# Null (0) to terminate stringSB \$t0, O(\$sp) \# Add null to stackADDI \$sp, \$sp, -5 \# Set up stack to printADDI \$v0, \$zero, 4 \# 4 is for print stringADDI \$a0, \$sp, 0
\# Set \$a0 to stack pointersyscall
\# Print to the log
9. Fill in the C++ programs below to produce the Output on the right.

```
#include <iostream>
using namespace std;
int main()
{
```


Output:

```
    for(int i = 2; i<= \ ; प){ 
        cout << i/2 << endl;
        }
        return 0;
    }
    #include <iostream>
    using namespace std;
    int main()
{
    int size = 5;
    for (int i = 0; i < size; i++)
    {
            for (int j = 0; j < i; j++)
                cout << " ";
for (int j = 0; j < size - i; j++)
                cout << "*";
            cout << endl;
        }
        return 0;
    }
    Output:
```

(a)
\#include <iostream>
using namespace std;
int main()\{
int $\mathrm{m}=2$;
int $\mathrm{n}=6$;
(c)
(b)
Output:
(c)
while $(\mathrm{m}+\mathrm{n}<=\square)$ \{
cout $\ll \mathrm{m} \ll\|\| \ll \mathrm{n} \ll$ endl;
26
75
\square //update m
173
n--;
\}
return 0;
\}
10. (a) Translate the following python program into a complete $\mathbf{C}++$ program:
num $=-1$
while num <0 or num >100 : num $=\operatorname{int}(\operatorname{input}(" E n t e r\lrcorner a n\lrcorner i n t e g e r\lrcorner i n\lrcorner[0\lrcorner 100,]:\lrcorner "))$
print ("num $\llcorner=", ~ n u m)$
//include library and namespace
\square
//main function signature
\square
//loop line
\square
7/10op body
\{
\square
\}
//print num

| /return |
| :--- |
| |

\}
(b) Write a $\mathrm{C}++$ code. Declare variables for lb and kilograms (kg). Declare variable for choice. If choice is 1 , then enter number of lbs, and convert it to kilograms (kgs) and print the result out. Otherwise, enter number of kgs, and convert it to lbs and print the result out.
$1 \mathrm{lb}=0.45 \mathrm{~kg}$
$1 \mathrm{~kg}=1 / 0.45 \mathrm{lbs}$
Some sample input/output is as follows.
Enter a choice: 1
Enter number of lbs: 2
$2 \mathrm{lbs}=0.9 \mathrm{kgs}$

Enter a choice: 2
Enter number of kgs: 3
$3 \mathrm{kgs}=6.66667 \mathrm{lbs}$
Just finish the code in main function. No need to write include library and main function signature and return statement.
//declare variables lbs and kgs (for kilograms).
\square
//declare and obtain input for variable choice.
\square
//Write if-statement when choice is 1 , //input lbs, convert to kgs (kilograms), and output result.
\square
//Write else-statement, input kgs, convert to lbs, and output result.
\square

SCRATCH PAPER

SCRATCH PAPER

