Row:	SEAT:

Final Exam F22 V1

CSci 127: Introduction to Computer Science Hunter College, City University of New York

December 16, 2022

Exam Rules

- Show all your work. Your grade will be based on the work shown.
- The exam is closed book and closed notes with the exception of an $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ piece of paper filled with notes, programs, etc.
- When taking the exam, you may have with you pens and pencils, and your note sheet.
- You may not use a computer, calculator, tablet, phone, earbuds, or other electronic device.
- Do not open this exam until instructed to do so.

Hunter College regards acts of academic dishonesty (e.g., plagiarism, cheating on examinations, obtaining unfair advantage, and falsification of records and official documents) as serious offenses against the values of intellectual honesty. The College is committed to enforcing the CUNY Policy on Academic Integrity and will pursue cases of academic dishonesty according to the Hunter College Academic Integrity Procedures.

I understand that all cases of academic dishonesty will be reported to the Dean of Students and will result in sanctions.		
Name:		
EmpID:		

ASCITTABLE

Decimal	Hex	Char									
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	
1	1	[START OF HEADING]	33	21	!	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22	"	66	42	B	98	62	b
3	3	[END OF TEXT]	35	23	\#	67	43	C	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	\%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	\&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	1	72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	A	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	B	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	I
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E	,	78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	o
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	p
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	s
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	y
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	\{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5 C	1	124	7 C	1
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D]	125	7D	\}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	\wedge	126	7E	\sim
31	$1 F$	[UNIT SEPARATOR]	63	3F	?	95	5F	-	127	7F	[DEL]

1. (a) Fill in the code below to produce the output on the right:
languages = "Python\&C++\&Java\&MIPS"
i. $\mathrm{cpp}=$ languages $[$ \square Output: print (cpp) C++
ii. python_mips $=\square$
for s in python_mips:

Output:

python mips
(b) Consider the following shell commands:
\$ pwd
/usr/john/cs127
\$ ls
airbab.csv houses.csv p1_hello.py p2_flower.py programs
i. What is the output for:
\$ rm airbab.csv
\$ mkdir data
\$ mv *.csv data
\$ ls
Output:
\square
ii. What is the output for:

Output:

```
$ cd data
$ pwd
```

\square
iii. What is the output for:

Output:

```
$ ls | grep csv | wc -l
```

```
$ ls | grep csv | wc -l
```

\square
2. (a) Select the color corresponding to the rgb values below:
i. $\mathrm{rgb}=(0,255,255)$black $\quad \square$ redcyangraypurple
ii. $\mathrm{rgb}=$ "\#009900"red greenblueblackwhite
iii. What is rgb values for yellow?$0,0,1$$0,1,1$
.
$1,0,0$
$\square 1,0,1$1, 1, 0
iv. What is the binary number equivalent of decimal number 50 ?

v. What is the Decimal number equivalent to Hexadecimal 2F?

Hexadecimal 2F = Decimal \square
(b) Given the list fruits below, fill in the code to produce the Output on the right:

```
fruits = ['apple', 'bananna', 'coconut', 'dragon fruit', 'elderberry']
```


import numpy as np import matplotlib.pyplot as plt
ii. img $=n p$.ones $((10,10,3))$

plt.imshow (img)
plt.show()
import numpy as np
import matplotlib.pyplot as plt
iii. img $=\operatorname{np}$. ones $((10,10,3))$

plt.imshow(img)
plt.show()

Output:
apple coconut elderberry

Output:

Output:

3. (a) What is the value (True/False):
in1 = False
i. in2 = True
out = not in1 or not in2
in1 = True
ii. in2 = True
in3 $=$ False
out $=$ not (in1 and not in2) and in3
in1 = True
iii. in2 = False
in3 $=$ not in1 or in2
out $=$ not in1 or in2 and not in3
in3 $=$ not in1 or in2
out $=$ not in1 or in2 and not in3
\square TrueFalseFalse
TrueFalse
iv.

in1 = False
in2 = False
in3 $=$ False
\square TrueFalse
(b) Draw a circuit that implements the logical expression:
(not in1 and not in2) or (in1 and (in2 or not in3))

4. Consider the following functions:

```
def count(mylist, target):
    num_occur = 0
    for num in mylist:
        if division(num, target
            ):
            num_occur += 1
    return num_occur
```

```
def division(s, t):
```

def division(s, t):
if t == 0:
if t == 0:
return False
return False
else: return s % t == 0
else: return s % t == 0
def main():
def main():
arr = [4, 6, 5, 9, 7, 2]
arr = [4, 6, 5, 9, 7, 2]
print(count(arr, 2))

```
    print(count(arr, 2))
```

(a) What are the formal parameters for division()? \square
\square
(b) What are the actual parameters for count()?
(c) How many calls are made to division() after calling main()? \square
(d) What is the output after calling main()?

Output:

5. Design an algorithm that asks the user for the name of a text file containing a grid of numbers and loads it into a 2D array of integers(think like an image without the color channel). The program outputs the number of all elements in the grid that are multiple of 3 .
\square

Input: \square

Output: \square

Design Pattern:

Search\square Find MinFind MaxFind All

Principal Mechanisms (select all that apply):
\square Single LoopNested Loop Conditional (if/else) statement
Indexing / Slicingsplit()groupby()

Process (as a concise and precise LIST OF STEPS / pseudocode): (Assume libraries have already been imported.)
6. Consider the violations.csv dataset that reports violations issued by Business Integrity Commission for companies operating in the trade waste industry. A snapshot given in the image below:

VIOLATION NUN VIOLATION ACCOUNT CITY	FINE AMOUNT	NUMBER OF COUNTS	DESCRIPTION OF RULE	
TWC-219653	KINNELON	500	1	Removed collected or disposed of trade $\mathbf{w c}$
TWC-218679	East Hanover	1000	1	Failed to timely notify Commission of a me
TWC-211037	WOODSIDE	2500	1	Removed collected or disposed of trade we
TWC-218495	BRONX	0	1	Failed to separate recyclable materials fro
TWC-212092	BRONX	400	1	Plates shall at all times be affixed in the m
TWC-213258	BRONX	200	1	Failed to timely notify Commission of a me

Fill in the Python program below:
\#Read input data into data frame:
\square
\#Print the maximum value in column 'NUMBER OF COUNTS'.
\square
\#Groups the data by 'VIOLATION ACCOUNT CITY' to extract data in WOODSIDE.

\#Print the average of FINE AMOUNT in Woodside.
\square
\#Find out the most common THREE rules violated.
\#Hint: look at 'DESCRIPTION OF RULE' and value_counts method.
7. Complete the following code.

Define reverse function, for a string, return its reversed version. For example, the return of reverse("abc") is "cba".
\square
Define isPalindrome function, if the given string is a palindrome, that is, the string read the same from left to right and from right to left, return true, otherwise, return false. For example, isPalindrome(" abc") returns false, but isPalindrome("aba") returns true.
8. (a) What does the MIPS program below print:

Output:

(b) Modify the program to print out behk. Shade in the box for each line that needs to be changed and rewrite the instruction below. Warning: you need to modify from the above code. Need to use j and beq commands.ADDI \$sp, \$sp, -7 \# Set up stackADDI \$t0, \$zero, 102 \# Set \$t0 at 102 ('f')ADDI \$s2, \$zero, 6 \# Use to test when you reach 6SETUP: SB \$t0, 0(\$sp) \# Next letter in \$t0ADDI \$sp, \$sp, 1 \# Increment the stackADDI \$s2, \$s2, -1 \# Decrement the counter by 1ADDI \$t0, \$t0, -1 \# Decrement the letter by 1BEQ \$s2, \$zero, DONE \# Jump to DONE if s2 == 0J SETUP \# Else, jump back to SETUPDONE: ADDI \$t0, \$zero, 0 \# Null (0) to terminate stringSB \$t0, O(\$sp) \# Add null to stackADDI \$sp, \$sp, -6 \# Set up stack to printADDI \$v0, \$zero, 4 \# 4 is for print stringADDI \$a0, \$sp, 0
\# Set \$a0 to stack pointersyscall
\# Print to the log
9. Fill in the $\mathrm{C}++$ programs below to produce the Output on the right.

```
#include <iostream>
using namespace std;
int main()
{
    for(int i = 3; i <= प ; प){ 
        cout << i*2 << endl;
        }
        return 0;
    }
    #include <iostream>
    using namespace std; cout << i*2 << endl;
```


Output:

```
\{
(a)
    int main()
        for (int i = 1; i < = 3; i++)
        \{
            for (int \(j=0\); \(j<i ; j++\) )
                cout << "*\#";
            cout << endl;
        \}
        return 0;
\}
\#include <iostream>
using namespace std;
int main()\{
(c) for (int i \(=5\); \(\square\)
\(\square\)

\section*{Output:}
```

{

```

\section*{Output:}
(b)
(a)

10. (a) Translate the following python program into a complete \(\mathbf{C}++\) program:
```

num = 0
while num <= 0:
num = int(input("Enter a positive integer: "))
print("num =", num)

```
//include library and namespace
\(\square\)
//main function signature
\(\square\)
\{
//initialization
\(\square\)
//loop line
\(\square\)
\}
//return
\(\square\)
\}
(b) Declare variables for miles and kilometers. Declare variable for choice. If choice is 1 , then enter number of miles, and convert it to kilometers and print the result out. Otherwise, enter number of kilometers, and convert it to miles and print the result out.
1 mile \(=1.6\) kilometers 1 kilometer \(=1 / 1.6\) mile
Some sample input/output is as follows.
Enter a choice: 1
Enter number of miles: 2
2 miles \(=3.2\) kilometers

Enter a choice: 2
Enter number of kilometers: 5
5 kilometers \(=3.125\) miles
Just finish the code in main function. No need to write include library and main function signature and return statement.
```

//declare variables miles and kms (for kilometers).

```
//declare and obtain input for variable choice.
\(\square\)
//Write else-statement: input kms (kilometers), convert to miles, and output result
\(\square\)

\section*{SCRATCH PAPER}

\section*{SCRATCH PAPER}```

