# Final Exam, Version 3 CSCI 127: Introduction to Computer Science Hunter College, City University of New York 

December 18, 2023

## Exam Rules

- Show all your work. Your grade will be based on the work shown.
- The exam is closed book and closed notes.
- When taking the exam, you may have with you pens, pencils, and an $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ piece of paper filled with notes, programs, etc.
- You may not use a computer, calculator, tablet, smart watch, or other electronic device.
- Do not open this exam until instructed to do so.

Hunter College regards acts of academic dishonesty (e.g., plagiarism, cheating on examinations, obtaining unfair advantage, and falsification of records and official documents) as serious offenses against the values of intellectual honesty. The College is committed to enforcing the CUNY Policy on Academic Integrity and will pursue cases of academic dishonesty according to the Hunter College Academic Integrity Procedures.

| I understand that all cases of academic dishonesty will be reported to the Dean of Students and <br> will result in sanctions. <br> Name: Melissa Lynch |
| :--- |

EmpID:

Signature:

ASC\|TABLE

| Decimal | Hex | Char |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | [NULL] | 32 | 20 | [SPACE] | 64 | 40 | @ | 96 | 60 |  |
| 1 | 1 | [START OF HEADING] | 33 | 21 | ! | 65 | 41 | A | 97 | 61 | a |
| 2 | 2 | [START OF TEXT] | 34 | 22 | " | 66 | 42 | B | 98 | 62 | b |
| 3 | 3 | [END OF TEXT] | 35 | 23 | \# | 67 | 43 | C | 99 | 63 | c |
| 4 | 4 | [END OF TRANSMISSION] | 36 | 24 | \$ | 68 | 44 | D | 100 | 64 | d |
| 5 | 5 | [ENQUIRY] | 37 | 25 | \% | 69 | 45 | E | 101 | 65 | e |
| 6 | 6 | [ACKNOWLEDGE] | 38 | 26 | \& | 70 | 46 | F | 102 | 66 | f |
| 7 | 7 | [BELL] | 39 | 27 | 1 | 71 | 47 | G | 103 | 67 | g |
| 8 | 8 | [BACKSPACE] | 40 | 28 | 1 | 72 | 48 | H | 104 | 68 | h |
| 9 | 9 | [HORIZONTAL TAB] | 41 | 29 | ) | 73 | 49 | , | 105 | 69 | i |
| 10 | A | [LINE FEED] | 42 | 2A | * | 74 | 4A | J | 106 | 6A | J |
| 11 | B | [VERTICAL TAB] | 43 | 2B | + | 75 | 4B | K | 107 | 6B | k |
| 12 | C | [FORM FEED] | 44 | 2C | , | 76 | 4C | L | 108 | 6C | I |
| 13 | D | [CARRIAGE RETURN] | 45 | 2D | - | 77 | 4D | M | 109 | 6D | m |
| 14 | E | [SHIFT OUT] | 46 | 2E |  | 78 | 4E | N | 110 | 6E | n |
| 15 | F | [SHIFT IN] | 47 | 2F | 1 | 79 | 4F | 0 | 111 | 6F | 0 |
| 16 | 10 | [DATA LINK ESCAPE] | 48 | 30 | 0 | 80 | 50 | P | 112 | 70 | p |
| 17 | 11 | [DEVICE CONTROL 1] | 49 | 31 | 1 | 81 | 51 | Q | 113 | 71 | q |
| 18 | 12 | [DEVICE CONTROL 2] | 50 | 32 | 2 | 82 | 52 | R | 114 | 72 | r |
| 19 | 13 | [DEVICE CONTROL 3] | 51 | 33 | 3 | 83 | 53 | S | 115 | 73 | s |
| 20 | 14 | [DEVICE CONTROL 4] | 52 | 34 | 4 | 84 | 54 | T | 116 | 74 | t |
| 21 | 15 | [NEGATIVE ACKNOWLEDGE] | 53 | 35 | 5 | 85 | 55 | U | 117 | 75 | u |
| 22 | 16 | [SYNCHRONOUS IDLE] | 54 | 36 | 6 | 86 | 56 | V | 118 | 76 | v |
| 23 | 17 | [ENG OF TRANS. BLOCK] | 55 | 37 | 7 | 87 | 57 | W | 119 | 77 | w |
| 24 | 18 | [CANCEL] | 56 | 38 | 8 | 88 | 58 | X | 120 | 78 | x |
| 25 | 19 | [END OF MEDIUM] | 57 | 39 | 9 | 89 | 59 | Y | 121 | 79 | y |
| 26 | 1A | [SUBSTITUTE] | 58 | 3A | : | 90 | 5A | Z | 122 | 7A | z |
| 27 | 1B | [ESCAPE] | 59 | 3B | ; | 91 | 5B | [ | 123 | 7B | \{ |
| 28 | 1C | [FILE SEPARATOR] | 60 | 3C | < | 92 | 5C | 1 | 124 | 7C | \| |
| 29 | 1D | [GROUP SEPARATOR] | 61 | 3D | = | 93 | 5D | ] | 125 | 7D | \} |
| 30 | 1E | [RECORD SEPARATOR] | 62 | 3E | > | 94 | 5E | ヘ | 126 | 7E | $\sim$ |
| 31 | 1F | [UNIT SEPARATOR] | 63 | 3 F | ? | 95 | 5F | - | 127 | 7F | [DEL] |

1. (a) What will the following Python code print:
i. banana = "xxyyzzBaaabbBbccc" print(banana.count("b"))

Output:
3

## Output:

```
xxyyzz
```


## Output:

BCCC

## Output:

$\square$
(b) Consider the contents of the current directory:

```
banana.txt banana.py carrot.csv clementine.py dragonfruit
```

i. What is the output for:

```
$ ls *r*
```


## Output:

carrot.csv
dragon fruit

## Output:

```
$ mv *.py ./dragonfruit
$ ls
```

iii. What is the output for:

```
$ ls -l | grep "banana" | wc -l
```


## Output:

$\square$
2. (a) Select the correct option.
i. What color is tina after this command? tina.color("\#008800")red $\square$ whitegray
green
ii. Select the LARGEST binary number:1011

- 1101
$\square 0111$
$\square 1010$ 1001
iii. Select the LARGEST hexadecimal number:
n FDEAEFFC CD
iv. What is the binary number equivalent to decimal 12 ?10110001
1100
0111 1110
v. What is the hexadecimal number equivalent to decimal 36 ?
3422
- 24
2 B CD
(b) Fill in the code below to make an image in which a pixel is green if it has an entry of 35 or greater in the array elevations. Otherwise, the pixel should be colored blue.

```
# Takes elevation data of NYC and displays storm surge map
import numpy as np
import matplotlib.pyplot as plt
elevations = np.loadtxt("elevationsNYC.txt")
#Base image size on shape (dimensions) of the elevations:
mapShape = elevations.shape + (3,)
floodMap = np.zeros(mapShape)
for row in range(mapShape[0]):
    for col in range(mapShape[1]):
```

$$
\begin{aligned}
& \text { if elevations } \begin{aligned}
&\text { row, col }]>35: \\
& \text { flood Map }[\text { row, col, } 1]=1.0 \\
& \text { else: } \\
& \text { flood Map }[\text { row, col, } 2]=1.0
\end{aligned} .=\text {. }
\end{aligned}
$$

\#Save the image:
plt.imsave("floodMap.png", floodMap)
3. (a) What is the value (True/False):

(b) Design a circuit that implements the logical expression:
((not in1) or (in1 and in2)) and (not in3)
inl

4. (a) Draw the output for the function calls:

```
import turtle
tess = turtle.Turtle()
tess.shape("turtle")
def ramble(t, side):
    if side == 0:
        t.stamp()
        t.forward(50)
        t.stamp()
    else:
        for i in range(side):
            t.forward(50)
            t.left(360/side)
```

i. ramble(tess, 0)

ii. ramble(tess, 5)

i. When the user enters: aa?

## Output:

```
BB
```

ii. When the user enters: cab?

Output:
$\square$
iii. When the user enters: alice?

## Output:

$\mathrm{Bl}: \mathrm{Be}$
5. Fill in the Python program below. Consider the following pseudocode:

- Generate a random integer from 0 to 15 (inclusive), call it x
- Print the number in one's complement representation; that is, given a binary string, all 0's become 1's and all 1's become 0's
- Example: 0110 in one's complement representation is 1001
\#imports the library for generating random numbers
import random
\#generates a random integer from 0-15 inclusive
$x=$ random rand range $(16)$
\#converts the random integer to a binary string
binary $=$ bin (x)[2:] \# sample use: bin(6)[2:] == "0110"
\#stores the one's complement representation of x
result = ""
\#loops through the binary string
$\square$
\#if the char is "0", add "1" to result
if $c==10{ }^{11}$ : result $t=\left.{ }^{\prime \prime}\right|^{\prime}$
\#otherwise, add "0" to result
else:

$$
\text { result } t=" 0 \text { " }
$$

\#prints x and its one's complement representation
print $(x$, result $)$
6. Consider the following main function that analyzes star data:

```
import pandas as pd
    def main():
        stars = pd.read_csv("stars.csv")
        avgH = avgRadius(stars, "Hypergiant")
        maxTemp = hottestStar(stars)
```

Define the functions below:

```
def avgRadius(df, starType):
```

    " " "
    Takes a DataFrame and a string as input
    Returns the average radius of input value
    First, group by "Star type" then get group starType
    Get the average radius of the group by using the "Radius" column
    " " "
    $$
\begin{aligned}
& h=d f \text {.groupby ("Startype"). get-group (star Type) } \\
& \text { return } h[\text { "Radius"]. mean () }
\end{aligned}
$$

def hottestStar (af):
"""
Takes a DataFrame as input
Returns the maximum value in the column, "Temperature" " " "

$$
\text { return df }[" T e m p e r a t u r e "] \cdot \max ()
$$

7. Fill in the Python program below that asks the user for the name of a .png (image) file and turns the right half of the image red. The new image should then be displayed to the user.
\#import the libraries for images
import numpy as np
import mat potlib. pyplot as plt
```
#get user input
    infile = input("Enter firnamc: ")
#read the image file
img plt.imread (infile)
#get the width of the image
width = img. shape [1]
#make a copy of the original image
img2 = img.copy ()
#set the green and blue channels to 0.0
img2[:, width | 2:, 1:]=0.0
#set the red channel to 1.0
img2[:, width| 2:, 0]=1.0
#load the image into pyplot
    plt. im show (img 2)
#display the image
    plt. Show ()
```

8. (a) Consider the following MIPS program:

ADDI \$s0, \$zero, 4
ADD \$s1, \$s0, \$s0
ADD \$s2, \$s1, \$s1
ADDI \$s3, \$s2, 3
After the program runs, what is the value stored in:
i. register \$s1

ii. register \$s2

$$
16
$$

iii. register \$s3
$\square$
19
(b)

What is the output for a run of this MIPS program:

## Output:

## LMNO

\#Loop through four letters:
ADDI \$sp, \$sp, -5
ADDI \$t0, \$zero, 76
\# Set up stack
ADDI \$s2, \$zero, 80
SETUP: SB \$t0, $0(\$ \mathrm{sp})$
ADDI \$sp, \$sp, 1
ADDI \$t0, \$t0, 1
BEQ \$t0, \$s2, DONE
J SETUP
DONE: ADDI \$t0, \$zero, 0
SB \$t0, 0 (\$sp)
ADDI \$sp, \$sp, -4
ADDI \$v0, \$zero, 4
ADDI \$a0, \$sp, 0
syscall
\# Start \$t0 at 76 (L)
\# Use to test when you reach 80 (P)
\# Next letter in \$t0
\# Increment the stack
\# Increment the letter
\# Jump to done if $\$ \mathrm{to}==80$
\# If not, jump back to SETUP for loop
\# Null (0) to terminate string
\# Add null to stack
\# Set up stack to print
\# 4 is for print string
\# Set \$a0 to stack pointer for printing
\# print to the log
9. What is the output of the following C++ programs?

```
//Heraclitus
#include <iostream>
using namespace std;
int main() {
    cout << "No man steps foot\n";
    cout << "in the same river\ntwice, ";
(a) cout << "for it is not the" << endl;
    cout << "same river, and he is";
    cout << "\nnot the same man;";
}
```

    //Mystery C++, \#2
    \#include <iostream>
using namespace std;
int main() \{
int sum $=5$;
while (sum < 13) \{
(b)
cout << sum;
sum $=$ sum + sum;
\}
\}
//Mystery C++, \#3
\#include <iostream>
using namespace std;
int main() \{
for (int $i=0 ; i<3 ; i++)$ \{
for (int $j=0 ; j<3 ; j++$ ) \{
if ( $\mathrm{j} \% 2==0$ ) \{
cout << "+";
\} else \{
cout << "-";
\}
\}
cout << endl;
\}
\}

## Output:

No man steps foot
in the same river
twice, for it is not the
same river, and he is
not the same man;

## Output:

## 510

Output:

10. (a) Write a complete $\mathbf{C}++$ program that prompts the user for a string until a nonempty string is entered. The program then prints the nonempty string that was entered.
//include library for input/output and declare namespace \#include < iostream > using name space std
//main function signature

```
int main(l
{
    //prompt user for string until non-empty string is entered
    String }s=1"";//empty string
    while( }s==="")
        cout <<" Enter a non-empty string:";
        cin}>>\textrm{s}\mathrm{ ;
        }
```

    //print nonempty string that was entered
        Cont \(\ll s\);
    return 0;
    \}
(b) Write a complete $\mathbf{C}++$ program that prints the change in population of predator and prey following the Lotka-Volterra model:

$$
\begin{gathered}
r=2 * r-(0.25 * r) * f \\
f=0.95 * f+(0.1 * r) * f
\end{gathered}
$$

Assume that the starting population of prey (rabbits) is 1000 and the starting population of predators (foxes) is 100 . Your program should print for the first 10 years: the year, the number of prey, and the number of predators.
//include library for input/output and declare namespace
\#include <iostream>
using namespace std;

## //main function signature

```
    int main()
```

\{
//calculate and print the predicted population
double $r=1000.0$;
double $f=100.0$;
for (int $i=0 ; i<10 ; i+t)\}$
cont $<i \ll ": " \lll \lll \lll<$ end!
$r=r^{*} 2.0-\left(r^{*} 0.25\right)^{*} F_{\text {; }}$
$f=f^{*} 0.95+\left(r^{*} 0.1\right) * f$;
$\xi$





$\qquad$
return 0;
\}

