Final Exam, Version 1 CSCI 127: Introduction to Computer Science Hunter College, City University of New York

December 12, 2023

Exam Rules

- Show all your work. Your grade will be based on the work shown.
- The exam is closed book and closed notes.
- When taking the exam, you may have with you pens, pencils, and an $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ piece of paper filled with notes, programs, etc.
- You may not use a computer, calculator, tablet, smart watch, or other electronic device.
- Do not open this exam until instructed to do so.

Hunter College regards acts of academic dishonesty (e.g., plagiarism, cheating on examinations, obtaining unfair advantage, and falsification of records and official documents) as serious offenses against the values of intellectual honesty. The College is committed to enforcing the CUNY Policy on Academic Integrity and will pursue cases of academic dishonesty according to the Hunter College Academic Integrity Procedures.

I understand that all cases of academic dishonesty will be reported to the Dean of Students and will result in sanctions. Name: Meliss A LYCh

EmpID:

Signature:

ASC\|TABLE

Decimal	Hex	Char									
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	
1	1	[START OF HEADING]	33	21	!	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22	"	66	42	B	98	62	b
3	3	[END OF TEXT]	35	23	\#	67	43	C	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	\%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	\&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	1	72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	,	105	69	i
10	A	[LINE FEED]	42	2A	*	74	4A	J	106	6A	J
11	B	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	I
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	p
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	s
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	y
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	\{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	1	124	7C	\|
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D]	125	7D	\}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	ヘ	126	7E	\sim
31	1F	[UNIT SEPARATOR]	63	3 F	?	95	5F	-	127	7F	[DEL]

1. (a) What will the following Python code print:
i. banana = "xxyyzzBaaabbBbccc" print(banana.count("b"))
ii. $B=$ banana.split("B")
print(B[0])
iii. $u p=B[-1]$. upper ()
print(up)
for c in up:
iv. print(c.lower())

Output:

$$
3
$$

Output:

$$
x x y y z z
$$

Output:

$$
B C C C
$$

Output:

b
c
c
c
(b) Consider the contents of the current directory:

```
banana.txt banana.py carrot.csv clementine.py dragonfruit
```

i. What is the output for:

```
$ ls *r*
```


Output:

carrot.csv
dragon fruit

Output:

```
banama.txt
carrot.csu
dragonfruit
```

iii. What is the output for:

```
$ ls -l | grep "banana" | wc -l
```


Output:

\square
2. (a) Select the correct option.
i. What color is tina after this command? tina.color("\#888888")
\square blackred \square white
gray
green
ii. Select the LARGEST Binary number:
$\square 1011$11010111
1010
1110
iii. Select the LARGEST Hexadecimal number:
\square FDEAFC CD
iv. What is the binary number equivalent to decimal 7 ?101100011100
0111
v. What is the hexadecimal number equivalent to decimal 34 ?34242B CD
(b) Fill in the code below to make an image in which a pixel is red if it has an entry of 50 or greater in the array elevations. Otherwise, the pixel should be colored green.

```
# Takes elevation data of NYC and displays storm surge map
import numpy as np
import matplotlib.pyplot as plt
elevations = np.loadtxt("elevationsNYC.txt")
#Base image size on shape (dimensions) of the elevations:
mapShape = elevations.shape + (3,)
floodMap = np.zeros(mapShape)
for row in range(mapShape[0]):
    for col in range(mapShape[1]):
```

```
if elevations [row, col]>=50:
            Flood Map [row,col, 0] = 1.0
else:
    flood Map[rous col, 1]=1.0
```

\#Save the image:
plt.imsave("floodMap.png", floodMap)
3. (a) What is the value (True/False):
in = False
i. in = False
out $=$ False
out $=$ in or in2
in = False
ii. ind $=$ True
out $=$ True
out $=$ not inf or (in2 and not inf)
in = True
iii. in $=$ False or not inf
out $=$ True
in = in1 and in2
out $=$ in or not in

iv.

```
in1 = True
in2 = True
in3 = False
```

$$
\text { out }=\text { False }
$$

(b) Design a circuit that implements the logical expression:

```
((not in1) or (in1 and in2)) and (not in3)
```

in 1 in 2

in 3

4. (a) Draw the output for the function calls:

```
import turtle
tess = turtle.Turtle()
tess.shape("turtle")
def ramble(t,side):
    if side == 0:
        t.stamp()
        t.forward(50)
        t.stamp()
    else:
        for i in range(side):
            t.forward(50)
            t.left(360/side)
```

i. ramble(tess,0)

ii. ramble(tess,5)

i. When the user enters: aa?

Output:

\square
ii. When the user enters: cab?

Output:

AA A

iii. When the user enters: alice?

Output:

AliAs

```
word = input("Enter a word: ")
s = enigma(word)
print("Output is:", s)
#Another mystery program...
def mystery(num):
    send = chr(num)
    if num < ord("d"):
        send = send + "H"
    return send
def enigma(letters):
    data = ""
    for x in letters:
        n = ord(x)
        c = "A"
        if n > 100:
            c = mystery(n)
            data = data + c
    return data
```

5. Fill in the Python program below. Consider the following pseudocode:

- Ask the user for a word
- Generate a random integer from 1 to 4 (inclusive), call it x
- Print the user's word in reverse, with x copies of the characters on each line

Sample runs:

Enter a word: frog	Enter a word: frog
g	ggg
o	ooo
r	rrr
f	fff

\#import the library for generating random numbers
\square
\#get user input
word $=$ input ("Enter a word:")
\#generate a random number from 1-4 inclusive
$x=$ random. rand range $(1,5)$
\#loop through the input word in reverse
for i in range $(\operatorname{len}($ word $)-1,-1,-1)$:
\#prints x copies of the current character print (word[i]*x)
6. Fill in the following functions that are part of a program that analyzes star data:

- getData(): asks the user for the name of the CSV file and returns a DataFrame of the contents.
- avgRadius(df): returns the average radius of a Hypergiant, and
- hottestStar (df): returns the hottest temperature in the DataFrame.

```
import pandas as pd
def getData():
    | | |
    Asks the user for the name of the CSV and
    Returns a dataframe of the contents.
    """
```

in $F=$ input ("Enter filename: ")
return pd. read_csv (inF)
def avgRadius(df):
"""
Takes a DataFrame as input.
Returns the average radius of a Hypergiant.
First, group by "Star type" then get group "Hypergiant"
Get the average radius of the Hypergiants by using the "Radius" column
"""

```
h=df.group by ("Star type"). get-group ("Hypergiant")
return h["Radius"].mean()
```

def hottestStar(df):
"""
Takes a DataFrame as input.
Returns the maximum value in the column, "Temperature"
"""
return df ["Temperature"]. $\max ()$
7. Fill in the Python program below that asks the user for the name of a .png (image) file and turns the right half of the image red. The new image should then be displayed to the user.
\#import the libraries for images

import numpy as np
import mat plot lib. py plot as plt

```
#get user input
infile = input ("Enter file name:")
#read the image file
img = plt.imread (infile)
#get the width of the image
width = img. shape [1]
#make a copy of the original image
img2 = img.copy ()
#set the green and blue channels to 0.0
img 2[:, wid+n/12:, 1:]=0.0
#set the red channel to 1.0
img 2[:, width|2:0]=1.0
#load the image into pyplot
plt.imshow (img 2)
#display the image
plt. Show ()
```

8. (a) Consider the following MIPS program:

ADDI \$s0, \$zero, 2
ADD \$s1, \$s0, \$s0
ADD \$s2, \$s1, \$s1
ADDI \$s3, \$s2, 5
After the program runs, what is the value stored in:
i. register \$s1
\square
ii. register \$s2

$$
8
$$

iii. register \$s3

(b)

What is the output for a run of this MIPS program:

Output:

LMNO
\#Loop through four letters:
ADDI \$sp, \$sp, -5
ADDI \$t0, \$zero, 76
ADDI \$s2, \$zero, 80
SETUP: SB \$t0, $0(\$ \mathrm{sp})$
ADDI \$sp, \$sp, 1
ADDI \$t0, \$t0, 1
BEQ \$t0, \$s2, DONE
J SETUP
DONE: ADDI \$t0, \$zero, 0
SB \$t0, $0(\$ \mathrm{sp})$
ADDI \$sp, \$sp, -4
ADDI \$v0, \$zero, 4
ADDI \$a0, \$sp, 0
syscall

```
# Set up stack
# Start $t0 at 76 (L)
# Use to test when you reach 80 (P)
# Next letter in $t0
# Increment the stack
# Increment the letter
# Jump to done if $t0 == 80
# If not, jump back to SETUP for loop
# Null (0) to terminate string
# Add null to stack
# Set up stack to print
# 4 is for print string
# Set $a0 to stack pointer for printing
# print to the log
```

9. What is the output of the following C++ programs?
```
//Billy Joel
#include <iostream>
using namespace std;
int main() {
        cout << "She'll bring\nout ";
        cout << "the best and\n";
(a) cout << "the worst " << endl;
        cout << "you can \nbe;";
}
```

 //Mystery C++, \#2
 \#include <iostream>
 using namespace std;
 int main() \{
 int sum \(=3\);
 while (sum < 10) \{
 cout << sum;
 sum \(=\) sum + sum;
 \}
 \}
 //Mystery C++, \#3
 \#include <iostream>
using namespace std;
int main() \{
for (int i $=0$; i < 3; i++) \{
for (int $j=0 ; j<4 ; j++$) \{
if ($\mathrm{j} \% 2==0$) \{
cout << "+";
(c)
\} else \{
cout << "-";
\}
\}
cout << endl;
\}
\}

Output:

10. (a) Write a complete $\mathbf{C}++$ program that prompts the user for a string until a non-empty string is entered. The program then prints the non-empty string that was entered.

```
/include library for printing and declare namespace
# include <iostream>
using namespace std;
```

//main function signature
int main()
\{
//prompt user for string until non-empty string is entered
string $s=$ "" $/ 1$ empty string
while ($s=={ }^{\prime \prime \prime}$) ξ
cout $\angle C$ " Enter nonempty string: ";
cin $\gg 5$;
ξ
cout ces;
return 0;
\}
(b) Write a complete $\mathbf{C +}+$ program that prints the change in population of the state of New Jersey:

$$
p=p+(B * p)-(D * p)
$$

where p is the population, B is the birth rate of 58 births for every 1000 people $\left(\frac{58}{1000}\right)$ each year, and D is the death rate of 10.2 for every 1000 people ($\frac{10.2}{1000}$). In 2022 , the population of New Jersey was 9.27 million. Your program should print expected population for the years 2022 to 2032. Each line should have: the year and the population (in millions).
//include library for printing and declare namespace

```
# include <iostream>
```

using name space std;
//main function signature

```
int main()
```

\{
//calculate and print the predicted population
double $p=9.27$;
for (int year $=2022$; year $c=2032$; years) $\{$
court $<$ year $\ll " \backslash t " \leftrightarrow P \ll$ end';
$p=p+(58.0 / 1000.0)^{*} p-(10.2 / 1000.0)^{*} p j$
ξ
return 0;
\}

