
CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

CSci 127 (Hunter) Lecture 8 24 March 2020 1 / 41



Instructions

This is our first video lecture

Please watch all the video segments in the
order in which they appear

Attempt the challenge at the end of a
segment before moving on to the next video

You should watch this entire lecture (all
videos) before moving on to the Online Lab 8

If you have consented to participate in the
Educational Psychology study,
fill in the 3-question survey after watching all
the videos (link provided at end of lecture)

CSci 127 (Hunter) Lecture 8 24 March 2020 2 / 41



Instructions

This is our first video lecture

Please watch all the video segments in the
order in which they appear

Attempt the challenge at the end of a
segment before moving on to the next video

You should watch this entire lecture (all
videos) before moving on to the Online Lab 8

If you have consented to participate in the
Educational Psychology study,
fill in the 3-question survey after watching all
the videos (link provided at end of lecture)

CSci 127 (Hunter) Lecture 8 24 March 2020 2 / 41



Instructions

This is our first video lecture

Please watch all the video segments in the
order in which they appear

Attempt the challenge at the end of a
segment before moving on to the next video

You should watch this entire lecture (all
videos) before moving on to the Online Lab 8

If you have consented to participate in the
Educational Psychology study,
fill in the 3-question survey after watching all
the videos (link provided at end of lecture)

CSci 127 (Hunter) Lecture 8 24 March 2020 2 / 41



Instructions

This is our first video lecture

Please watch all the video segments in the
order in which they appear

Attempt the challenge at the end of a
segment before moving on to the next video

You should watch this entire lecture (all
videos) before moving on to the Online Lab 8

If you have consented to participate in the
Educational Psychology study,
fill in the 3-question survey after watching all
the videos (link provided at end of lecture)

CSci 127 (Hunter) Lecture 8 24 March 2020 2 / 41



Instructions

This is our first video lecture

Please watch all the video segments in the
order in which they appear

Attempt the challenge at the end of a
segment before moving on to the next video

You should watch this entire lecture (all
videos) before moving on to the Online Lab 8

If you have consented to participate in the
Educational Psychology study,
fill in the 3-question survey after watching all
the videos (link provided at end of lecture)

CSci 127 (Hunter) Lecture 8 24 March 2020 2 / 41



Weekly Checklist

1 Complete lecture preview on Monday or before
10am Tuesday

2 Schedule Code Review appointment on
Blackboard by Tuesday

3 Watch all lecture videos working through
examples

4 Complete Code Review by Friday

5 Complete weekly quiz on Gradescope (after
reviewing for quiz topics here ) by Friday

6 Read online lab thoroughly.

7 Complete weekly programming assignments
and submit to Gradescope

CSci 127 (Hunter) Lecture 8 24 March 2020 3 / 41

https://huntercsci127.github.io/s20/quizzes.html


Weekly Checklist

1 Complete lecture preview on Monday or before
10am Tuesday

2 Schedule Code Review appointment on
Blackboard by Tuesday

3 Watch all lecture videos working through
examples

4 Complete Code Review by Friday

5 Complete weekly quiz on Gradescope (after
reviewing for quiz topics here ) by Friday

6 Read online lab thoroughly.

7 Complete weekly programming assignments
and submit to Gradescope

CSci 127 (Hunter) Lecture 8 24 March 2020 3 / 41

https://huntercsci127.github.io/s20/quizzes.html


Weekly Checklist

1 Complete lecture preview on Monday or before
10am Tuesday

2 Schedule Code Review appointment on
Blackboard by Tuesday

3 Watch all lecture videos working through
examples

4 Complete Code Review by Friday

5 Complete weekly quiz on Gradescope (after
reviewing for quiz topics here ) by Friday

6 Read online lab thoroughly.

7 Complete weekly programming assignments
and submit to Gradescope

CSci 127 (Hunter) Lecture 8 24 March 2020 3 / 41

https://huntercsci127.github.io/s20/quizzes.html


Weekly Checklist

1 Complete lecture preview on Monday or before
10am Tuesday

2 Schedule Code Review appointment on
Blackboard by Tuesday

3 Watch all lecture videos working through
examples

4 Complete Code Review by Friday

5 Complete weekly quiz on Gradescope (after
reviewing for quiz topics here ) by Friday

6 Read online lab thoroughly.

7 Complete weekly programming assignments
and submit to Gradescope

CSci 127 (Hunter) Lecture 8 24 March 2020 3 / 41

https://huntercsci127.github.io/s20/quizzes.html


Weekly Checklist

1 Complete lecture preview on Monday or before
10am Tuesday

2 Schedule Code Review appointment on
Blackboard by Tuesday

3 Watch all lecture videos working through
examples

4 Complete Code Review by Friday

5 Complete weekly quiz on Gradescope (after
reviewing for quiz topics here ) by Friday

6 Read online lab thoroughly.

7 Complete weekly programming assignments
and submit to Gradescope

CSci 127 (Hunter) Lecture 8 24 March 2020 3 / 41

https://huntercsci127.github.io/s20/quizzes.html


Weekly Checklist

1 Complete lecture preview on Monday or before
10am Tuesday

2 Schedule Code Review appointment on
Blackboard by Tuesday

3 Watch all lecture videos working through
examples

4 Complete Code Review by Friday

5 Complete weekly quiz on Gradescope (after
reviewing for quiz topics here ) by Friday

6 Read online lab thoroughly.

7 Complete weekly programming assignments
and submit to Gradescope

CSci 127 (Hunter) Lecture 8 24 March 2020 3 / 41

https://huntercsci127.github.io/s20/quizzes.html


Weekly Checklist

1 Complete lecture preview on Monday or before
10am Tuesday

2 Schedule Code Review appointment on
Blackboard by Tuesday

3 Watch all lecture videos working through
examples

4 Complete Code Review by Friday

5 Complete weekly quiz on Gradescope (after
reviewing for quiz topics here ) by Friday

6 Read online lab thoroughly.

7 Complete weekly programming assignments
and submit to Gradescope

CSci 127 (Hunter) Lecture 8 24 March 2020 3 / 41

https://huntercsci127.github.io/s20/quizzes.html


This week’s Checklist

1 Complete Lecture Preview 8 on Monday March 23 or before 10a
Tuesday March 24

2 Schedule Code Review 8 appointment on Blackboard on Monday
March 23

3 Watch all Lecture 8 videos working through examples posted Tuesday
March 24

4 Complete Code Review 8 (Programs 23-26) by Tuesday March 30

5 Complete Quiz 8 (Unix and Pandas) on Gradescope (after reviewing
for quiz topics here) by Tuesday March 30

6 Read online Lab 8 thoroughly.

7 Complete Programming Assignments (#26 - 30) and submit to
Gradescope March 23-March 27

CSci 127 (Hunter) Lecture 8 24 March 2020 4 / 41

https://huntercsci127.github.io/s20/quizzes.html


This week’s Checklist

1 Complete Lecture Preview 8 on Monday March 23 or before 10a
Tuesday March 24

2 Schedule Code Review 8 appointment on Blackboard on Monday
March 23

3 Watch all Lecture 8 videos working through examples posted Tuesday
March 24

4 Complete Code Review 8 (Programs 23-26) by Tuesday March 30

5 Complete Quiz 8 (Unix and Pandas) on Gradescope (after reviewing
for quiz topics here) by Tuesday March 30

6 Read online Lab 8 thoroughly.

7 Complete Programming Assignments (#26 - 30) and submit to
Gradescope March 23-March 27

CSci 127 (Hunter) Lecture 8 24 March 2020 4 / 41

https://huntercsci127.github.io/s20/quizzes.html


This week’s Checklist

1 Complete Lecture Preview 8 on Monday March 23 or before 10a
Tuesday March 24

2 Schedule Code Review 8 appointment on Blackboard on Monday
March 23

3 Watch all Lecture 8 videos working through examples posted Tuesday
March 24

4 Complete Code Review 8 (Programs 23-26) by Tuesday March 30

5 Complete Quiz 8 (Unix and Pandas) on Gradescope (after reviewing
for quiz topics here) by Tuesday March 30

6 Read online Lab 8 thoroughly.

7 Complete Programming Assignments (#26 - 30) and submit to
Gradescope March 23-March 27

CSci 127 (Hunter) Lecture 8 24 March 2020 4 / 41

https://huntercsci127.github.io/s20/quizzes.html


This week’s Checklist

1 Complete Lecture Preview 8 on Monday March 23 or before 10a
Tuesday March 24

2 Schedule Code Review 8 appointment on Blackboard on Monday
March 23

3 Watch all Lecture 8 videos working through examples posted Tuesday
March 24

4 Complete Code Review 8 (Programs 23-26) by Tuesday March 30

5 Complete Quiz 8 (Unix and Pandas) on Gradescope (after reviewing
for quiz topics here) by Tuesday March 30

6 Read online Lab 8 thoroughly.

7 Complete Programming Assignments (#26 - 30) and submit to
Gradescope March 23-March 27

CSci 127 (Hunter) Lecture 8 24 March 2020 4 / 41

https://huntercsci127.github.io/s20/quizzes.html


This week’s Checklist

1 Complete Lecture Preview 8 on Monday March 23 or before 10a
Tuesday March 24

2 Schedule Code Review 8 appointment on Blackboard on Monday
March 23

3 Watch all Lecture 8 videos working through examples posted Tuesday
March 24

4 Complete Code Review 8 (Programs 23-26) by Tuesday March 30

5 Complete Quiz 8 (Unix and Pandas) on Gradescope (after reviewing
for quiz topics here) by Tuesday March 30

6 Read online Lab 8 thoroughly.

7 Complete Programming Assignments (#26 - 30) and submit to
Gradescope March 23-March 27

CSci 127 (Hunter) Lecture 8 24 March 2020 4 / 41

https://huntercsci127.github.io/s20/quizzes.html


This week’s Checklist

1 Complete Lecture Preview 8 on Monday March 23 or before 10a
Tuesday March 24

2 Schedule Code Review 8 appointment on Blackboard on Monday
March 23

3 Watch all Lecture 8 videos working through examples posted Tuesday
March 24

4 Complete Code Review 8 (Programs 23-26) by Tuesday March 30

5 Complete Quiz 8 (Unix and Pandas) on Gradescope (after reviewing
for quiz topics here) by Tuesday March 30

6 Read online Lab 8 thoroughly.

7 Complete Programming Assignments (#26 - 30) and submit to
Gradescope March 23-March 27

CSci 127 (Hunter) Lecture 8 24 March 2020 4 / 41

https://huntercsci127.github.io/s20/quizzes.html


This week’s Checklist

1 Complete Lecture Preview 8 on Monday March 23 or before 10a
Tuesday March 24

2 Schedule Code Review 8 appointment on Blackboard on Monday
March 23

3 Watch all Lecture 8 videos working through examples posted Tuesday
March 24

4 Complete Code Review 8 (Programs 23-26) by Tuesday March 30

5 Complete Quiz 8 (Unix and Pandas) on Gradescope (after reviewing
for quiz topics here) by Tuesday March 30

6 Read online Lab 8 thoroughly.

7 Complete Programming Assignments (#26 - 30) and submit to
Gradescope March 23-March 27

CSci 127 (Hunter) Lecture 8 24 March 2020 4 / 41

https://huntercsci127.github.io/s20/quizzes.html


This week’s Checklist

1 Complete Lecture Preview 8 on Monday March 23 or before 10a
Tuesday March 24

2 Schedule Code Review 8 appointment on Blackboard on Monday
March 23

3 Watch all Lecture 8 videos working through examples posted Tuesday
March 24

4 Complete Code Review 8 (Programs 23-26) by Tuesday March 30

5 Complete Quiz 8 (Unix and Pandas) on Gradescope (after reviewing
for quiz topics here) by Tuesday March 30

6 Read online Lab 8 thoroughly.

7 OR BETTER IF YOU ARE WORKING AHEAD

Complete
Programming Assignments (#31 - 35) and submit to Gradescope
March 23-March 27

CSci 127 (Hunter) Lecture 8 24 March 2020 5 / 41

https://huntercsci127.github.io/s20/quizzes.html


This week’s Checklist

1 Complete Lecture Preview 8 on Monday March 23 or before 10a
Tuesday March 24

2 Schedule Code Review 8 appointment on Blackboard on Monday
March 23

3 Watch all Lecture 8 videos working through examples posted Tuesday
March 24

4 Complete Code Review 8 (Programs 23-26) by Tuesday March 30

5 Complete Quiz 8 (Unix and Pandas) on Gradescope (after reviewing
for quiz topics here) by Tuesday March 30

6 Read online Lab 8 thoroughly.

7 OR BETTER IF YOU ARE WORKING AHEAD Complete
Programming Assignments (#31 - 35) and submit to Gradescope
March 23-March 27

CSci 127 (Hunter) Lecture 8 24 March 2020 5 / 41

https://huntercsci127.github.io/s20/quizzes.html


Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Github

Design Challenge:

CSci 127 (Hunter) Lecture 8 24 March 2020 6 / 41



Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Github

Design Challenge:

CSci 127 (Hunter) Lecture 8 24 March 2020 7 / 41



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 24 March 2020 8 / 41



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 24 March 2020 8 / 41



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 24 March 2020 8 / 41



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 24 March 2020 8 / 41



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 24 March 2020 8 / 41



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parenthesis, both
in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters.

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 24 March 2020 9 / 41



Challenge:

What are the formal parameters? What is returned?

CSci 127 (Hunter) Lecture 8 24 March 2020 10 / 41



Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 8 24 March 2020 11 / 41



Input Parameters

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 8 24 March 2020 12 / 41



Input Parameters

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 8 24 March 2020 12 / 41



Input Parameters

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 8 24 March 2020 12 / 41



Input Parameters

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 8 24 March 2020 12 / 41



Input Parameters

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 8 24 March 2020 12 / 41



Input Parameters: What about Lists?

When called, the actual parameter values
are copied to the formal parameters.

What is copied with a list?

The address of the list, but not the
individual elements.

The actual parameters do not change, but
the inside elements might.

Easier to see with a demo.

CSci 127 (Hunter) Lecture 8 24 March 2020 13 / 41



Input Parameters: What about Lists?

When called, the actual parameter values
are copied to the formal parameters.

What is copied with a list?

The address of the list, but not the
individual elements.

The actual parameters do not change, but
the inside elements might.

Easier to see with a demo.

CSci 127 (Hunter) Lecture 8 24 March 2020 13 / 41



Input Parameters: What about Lists?

When called, the actual parameter values
are copied to the formal parameters.

What is copied with a list?

The address of the list, but not the
individual elements.

The actual parameters do not change, but
the inside elements might.

Easier to see with a demo.

CSci 127 (Hunter) Lecture 8 24 March 2020 13 / 41



Input Parameters: What about Lists?

When called, the actual parameter values
are copied to the formal parameters.

What is copied with a list?

The address of the list, but not the
individual elements.

The actual parameters do not change, but
the inside elements might.

Easier to see with a demo.

CSci 127 (Hunter) Lecture 8 24 March 2020 13 / 41



Input Parameters: What about Lists?

When called, the actual parameter values
are copied to the formal parameters.

What is copied with a list?

The address of the list, but not the
individual elements.

The actual parameters do not change, but
the inside elements might.

Easier to see with a demo.

CSci 127 (Hunter) Lecture 8 24 March 2020 13 / 41



Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 8 24 March 2020 14 / 41



Challenge:

What are the formal parameters for the functions?

What is the output of:

r = foo([1,2,3,4])

print("Return: ", r)

What is the output of:

r = foo([1024,512,256,128])

print("Return: ", r)

CSci 127 (Hunter) Lecture 8 24 March 2020 15 / 41



Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 8 24 March 2020 16 / 41



Challenge:

Predict what the code will do:

CSci 127 (Hunter) Lecture 8 24 March 2020 17 / 41



IDLE

(Demo with IDLE)

CSci 127 (Hunter) Lecture 8 24 March 2020 18 / 41



Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Github

Design Challenge:

CSci 127 (Hunter) Lecture 8 24 March 2020 19 / 41



OpenData Design Question

Design an algorithm that finds the closest collision.
(Sample NYC OpenData collision data file on back of lecture slip.)

CSci 127 (Hunter) Lecture 8 24 March 2020 20 / 41



OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:
1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Print the location with the smallest distance.

Let’s use function names as placeholders for the ones we’re unsure...

CSci 127 (Hunter) Lecture 8 24 March 2020 21 / 41



OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:
1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Print the location with the smallest distance.

Let’s use function names as placeholders for the ones we’re unsure...

CSci 127 (Hunter) Lecture 8 24 March 2020 21 / 41



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 24 March 2020 22 / 41



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 24 March 2020 22 / 41



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 24 March 2020 22 / 41



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 24 March 2020 22 / 41



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 24 March 2020 22 / 41



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 24 March 2020 22 / 41



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 24 March 2020 22 / 41



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 24 March 2020 22 / 41



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 24 March 2020 22 / 41



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 24 March 2020 22 / 41



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 24 March 2020 23 / 41



Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Github

Design Challenge:

CSci 127 (Hunter) Lecture 8 24 March 2020 24 / 41



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 24 March 2020 25 / 41



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 24 March 2020 25 / 41



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 24 March 2020 25 / 41



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 24 March 2020 25 / 41



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 24 March 2020 25 / 41



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 24 March 2020 25 / 41



Challenge:

http://koalastothemax.com

Top-down design puzzle:

I What does koalastomax do?
I What does each circle represent?

Write a high-level design for it.

Translate into code with function calls.

CSci 127 (Hunter) Lecture 8 24 March 2020 26 / 41



Demo

CSci 127 (Hunter) Lecture 8 24 March 2020 27 / 41



Demo

CSci 127 (Hunter) Lecture 8 24 March 2020 27 / 41



Demo

CSci 127 (Hunter) Lecture 8 24 March 2020 27 / 41



Demo

CSci 127 (Hunter) Lecture 8 24 March 2020 28 / 41



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 24 March 2020 29 / 41



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 24 March 2020 29 / 41



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:

I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 24 March 2020 29 / 41



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,

I Divide the region into 4 quarters.
I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 24 March 2020 29 / 41



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.

I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 24 March 2020 29 / 41



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each quarter.

I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 24 March 2020 29 / 41



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 24 March 2020 29 / 41



Averaging numpy arrays
Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 24 March 2020 30 / 41



Averaging numpy arrays
Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 24 March 2020 30 / 41



Averaging numpy arrays
Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 24 March 2020 30 / 41



Averaging numpy arrays
Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 24 March 2020 30 / 41



Averaging numpy arrays
Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 24 March 2020 30 / 41



Averaging numpy arrays
Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 24 March 2020 30 / 41



Averaging numpy arrays
Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 24 March 2020 30 / 41



Averaging numpy arrays
Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 24 March 2020 30 / 41



Averaging numpy arrays
Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 24 March 2020 30 / 41



Averaging numpy arrays
Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 24 March 2020 30 / 41



Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Github

Design Challenge:

CSci 127 (Hunter) Lecture 8 24 March 2020 31 / 41



Github

Octocat

Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified under the same licencse.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.

Also convenient place to host websites
(i.e. huntercsci127.github.io).

In Lab6 you set up github accounts to
copy (‘clone’) documents from the class
repo. (More in future courses.)

CSci 127 (Hunter) Lecture 8 24 March 2020 32 / 41



Github

Octocat

Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified under the same licencse.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.

Also convenient place to host websites
(i.e. huntercsci127.github.io).

In Lab6 you set up github accounts to
copy (‘clone’) documents from the class
repo. (More in future courses.)

CSci 127 (Hunter) Lecture 8 24 March 2020 32 / 41



Github

Octocat

Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified under the same licencse.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.

Also convenient place to host websites
(i.e. huntercsci127.github.io).

In Lab6 you set up github accounts to
copy (‘clone’) documents from the class
repo. (More in future courses.)

CSci 127 (Hunter) Lecture 8 24 March 2020 32 / 41



Github

Octocat

Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified under the same licencse.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.

Also convenient place to host websites
(i.e. huntercsci127.github.io).

In Lab6 you set up github accounts to
copy (‘clone’) documents from the class
repo. (More in future courses.)

CSci 127 (Hunter) Lecture 8 24 March 2020 32 / 41



Github

Octocat

Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified under the same licencse.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.

Also convenient place to host websites
(i.e. huntercsci127.github.io).

In Lab6 you set up github accounts to
copy (‘clone’) documents from the class
repo. (More in future courses.)

CSci 127 (Hunter) Lecture 8 24 March 2020 32 / 41



Github

Octocat

Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified under the same licencse.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.

Also convenient place to host websites
(i.e. huntercsci127.github.io).

In Lab6 you set up github accounts to
copy (‘clone’) documents from the class
repo. (More in future courses.)

CSci 127 (Hunter) Lecture 8 24 March 2020 32 / 41



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Find all current city job postings for internship positions.

CSci 127 (Hunter) Lecture 8 24 March 2020 33 / 41



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:
1 Open the file.
2 Select the rows that have “intern” in the business title.
3 Print out those rows.

CSci 127 (Hunter) Lecture 8 24 March 2020 34 / 41



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:
1 Open the file.
2 Select the rows that have “intern” in the business title.
3 Print out those rows.

CSci 127 (Hunter) Lecture 8 24 March 2020 34 / 41



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:

1 Open the file.
2 Select the rows that have “intern” in the business title.
3 Print out those rows.

CSci 127 (Hunter) Lecture 8 24 March 2020 34 / 41



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:
1 Open the file.

2 Select the rows that have “intern” in the business title.
3 Print out those rows.

CSci 127 (Hunter) Lecture 8 24 March 2020 34 / 41



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:
1 Open the file.
2 Select the rows that have “intern” in the business title.

3 Print out those rows.

CSci 127 (Hunter) Lecture 8 24 March 2020 34 / 41



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:
1 Open the file.
2 Select the rows that have “intern” in the business title.
3 Print out those rows.

CSci 127 (Hunter) Lecture 8 24 March 2020 34 / 41



Recap

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

CSci 127 (Hunter) Lecture 8 24 March 2020 35 / 41



Recap

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

CSci 127 (Hunter) Lecture 8 24 March 2020 35 / 41



Recap

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

CSci 127 (Hunter) Lecture 8 24 March 2020 35 / 41



Recap

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

CSci 127 (Hunter) Lecture 8 24 March 2020 35 / 41



Recap

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

CSci 127 (Hunter) Lecture 8 24 March 2020 35 / 41



Recap

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

CSci 127 (Hunter) Lecture 8 24 March 2020 35 / 41



Recap

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

CSci 127 (Hunter) Lecture 8 24 March 2020 35 / 41



Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions! Starting with S18, V1, #4a and #4b.

CSci 127 (Hunter) Lecture 8 24 March 2020 36 / 41



Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions! Starting with S18, V1, #4a and #4b.

CSci 127 (Hunter) Lecture 8 24 March 2020 36 / 41



Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:

I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions! Starting with S18, V1, #4a and #4b.

CSci 127 (Hunter) Lecture 8 24 March 2020 36 / 41



Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;

I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions! Starting with S18, V1, #4a and #4b.

CSci 127 (Hunter) Lecture 8 24 March 2020 36 / 41



Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and

I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions! Starting with S18, V1, #4a and #4b.

CSci 127 (Hunter) Lecture 8 24 March 2020 36 / 41



Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions! Starting with S18, V1, #4a and #4b.

CSci 127 (Hunter) Lecture 8 24 March 2020 36 / 41



Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions! Starting with S18, V1, #4a and #4b.

CSci 127 (Hunter) Lecture 8 24 March 2020 36 / 41



Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions! Starting with S18, V1, #4a and #4b.

CSci 127 (Hunter) Lecture 8 24 March 2020 36 / 41



Final Exam: Spring 2018, Version 1, #4a

CSci 127 (Hunter) Lecture 8 24 March 2020 37 / 41



Final Exam: Spring 2018, Version 1, #4a

(Demo with trinket)

CSci 127 (Hunter) Lecture 8 24 March 2020 38 / 41



Final Exam: Spring 2018, Version 1, #4b

CSci 127 (Hunter) Lecture 8 24 March 2020 39 / 41



Final Exam: Spring 2018, Version 1, #4b

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 8 24 March 2020 40 / 41



Final Notes

If you have consented to participate in the
Educational Psychology study,
please take this survey NOW (bit.ly/lecture8Survey)

If you have consented you will also continue to receive the text
message 3-question survey before (Tuesday mornings) and after
(Mondays) lectures.

CSci 127 (Hunter) Lecture 8 24 March 2020 41 / 41

https://cunyhunter.co1.qualtrics.com/jfe/form/SV_bwkuCI3ZAFYGVdb

