
CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

CSci 127 (Hunter) Lecture 3 11 February 2020 1 / 46

Frequently Asked Questions
From lecture slips & emails.

What does it mean that this course is hybrid?
Instead of having a second weekly lecture, you work independently through the
weekly Online Lab: reinforces material introduced in lecture, introduces new
material, and provide knowledge necessary to work on programming assignments.

Can I work ahead on programs?
Absolutely!!! You should be 5 or so programs ahead. If you are working on today’s
program you are already falling behind!!!

What do you mean by Input and Output?
Input is data provided to a program each time it runs (e.g. input() in Lab2);
Output is data produced by a program each time it runs (e.g. display text or
graphics on screen). Not all programs have Input or Output.

I don’t understand the ASCII Table?
Intro/Survey course: introduce high-level concepts before low-level. Cannot store
characters on a computer chip, only numbers. ASCII is simply an agreement on
how to map characters to numbers so they can be stored on computer chips.

Why are we learning about the command line?
Starting with Lab2, bottom section will introduce shell commands. Command line
is widely used among Computer Scientists and in Industry; very useful for
automating tasks and working remotely. Do not overlook!!! Will be tested on both
Quizzes and Final Exam.

CSci 127 (Hunter) Lecture 3 11 February 2020 2 / 46

Frequently Asked Questions
From lecture slips & emails.

What does it mean that this course is hybrid?

Instead of having a second weekly lecture, you work independently through the
weekly Online Lab: reinforces material introduced in lecture, introduces new
material, and provide knowledge necessary to work on programming assignments.

Can I work ahead on programs?
Absolutely!!! You should be 5 or so programs ahead. If you are working on today’s
program you are already falling behind!!!

What do you mean by Input and Output?
Input is data provided to a program each time it runs (e.g. input() in Lab2);
Output is data produced by a program each time it runs (e.g. display text or
graphics on screen). Not all programs have Input or Output.

I don’t understand the ASCII Table?
Intro/Survey course: introduce high-level concepts before low-level. Cannot store
characters on a computer chip, only numbers. ASCII is simply an agreement on
how to map characters to numbers so they can be stored on computer chips.

Why are we learning about the command line?
Starting with Lab2, bottom section will introduce shell commands. Command line
is widely used among Computer Scientists and in Industry; very useful for
automating tasks and working remotely. Do not overlook!!! Will be tested on both
Quizzes and Final Exam.

CSci 127 (Hunter) Lecture 3 11 February 2020 2 / 46

Frequently Asked Questions
From lecture slips & emails.

What does it mean that this course is hybrid?
Instead of having a second weekly lecture, you work independently through the
weekly Online Lab: reinforces material introduced in lecture, introduces new
material, and provide knowledge necessary to work on programming assignments.

Can I work ahead on programs?
Absolutely!!! You should be 5 or so programs ahead. If you are working on today’s
program you are already falling behind!!!

What do you mean by Input and Output?
Input is data provided to a program each time it runs (e.g. input() in Lab2);
Output is data produced by a program each time it runs (e.g. display text or
graphics on screen). Not all programs have Input or Output.

I don’t understand the ASCII Table?
Intro/Survey course: introduce high-level concepts before low-level. Cannot store
characters on a computer chip, only numbers. ASCII is simply an agreement on
how to map characters to numbers so they can be stored on computer chips.

Why are we learning about the command line?
Starting with Lab2, bottom section will introduce shell commands. Command line
is widely used among Computer Scientists and in Industry; very useful for
automating tasks and working remotely. Do not overlook!!! Will be tested on both
Quizzes and Final Exam.

CSci 127 (Hunter) Lecture 3 11 February 2020 2 / 46

Frequently Asked Questions
From lecture slips & emails.

What does it mean that this course is hybrid?
Instead of having a second weekly lecture, you work independently through the
weekly Online Lab: reinforces material introduced in lecture, introduces new
material, and provide knowledge necessary to work on programming assignments.

Can I work ahead on programs?

Absolutely!!! You should be 5 or so programs ahead. If you are working on today’s
program you are already falling behind!!!

What do you mean by Input and Output?
Input is data provided to a program each time it runs (e.g. input() in Lab2);
Output is data produced by a program each time it runs (e.g. display text or
graphics on screen). Not all programs have Input or Output.

I don’t understand the ASCII Table?
Intro/Survey course: introduce high-level concepts before low-level. Cannot store
characters on a computer chip, only numbers. ASCII is simply an agreement on
how to map characters to numbers so they can be stored on computer chips.

Why are we learning about the command line?
Starting with Lab2, bottom section will introduce shell commands. Command line
is widely used among Computer Scientists and in Industry; very useful for
automating tasks and working remotely. Do not overlook!!! Will be tested on both
Quizzes and Final Exam.

CSci 127 (Hunter) Lecture 3 11 February 2020 2 / 46

Frequently Asked Questions
From lecture slips & emails.

What does it mean that this course is hybrid?
Instead of having a second weekly lecture, you work independently through the
weekly Online Lab: reinforces material introduced in lecture, introduces new
material, and provide knowledge necessary to work on programming assignments.

Can I work ahead on programs?
Absolutely!!! You should be 5 or so programs ahead. If you are working on today’s
program you are already falling behind!!!

What do you mean by Input and Output?
Input is data provided to a program each time it runs (e.g. input() in Lab2);
Output is data produced by a program each time it runs (e.g. display text or
graphics on screen). Not all programs have Input or Output.

I don’t understand the ASCII Table?
Intro/Survey course: introduce high-level concepts before low-level. Cannot store
characters on a computer chip, only numbers. ASCII is simply an agreement on
how to map characters to numbers so they can be stored on computer chips.

Why are we learning about the command line?
Starting with Lab2, bottom section will introduce shell commands. Command line
is widely used among Computer Scientists and in Industry; very useful for
automating tasks and working remotely. Do not overlook!!! Will be tested on both
Quizzes and Final Exam.

CSci 127 (Hunter) Lecture 3 11 February 2020 2 / 46

Frequently Asked Questions
From lecture slips & emails.

What does it mean that this course is hybrid?
Instead of having a second weekly lecture, you work independently through the
weekly Online Lab: reinforces material introduced in lecture, introduces new
material, and provide knowledge necessary to work on programming assignments.

Can I work ahead on programs?
Absolutely!!! You should be 5 or so programs ahead. If you are working on today’s
program you are already falling behind!!!

What do you mean by Input and Output?

Input is data provided to a program each time it runs (e.g. input() in Lab2);
Output is data produced by a program each time it runs (e.g. display text or
graphics on screen). Not all programs have Input or Output.

I don’t understand the ASCII Table?
Intro/Survey course: introduce high-level concepts before low-level. Cannot store
characters on a computer chip, only numbers. ASCII is simply an agreement on
how to map characters to numbers so they can be stored on computer chips.

Why are we learning about the command line?
Starting with Lab2, bottom section will introduce shell commands. Command line
is widely used among Computer Scientists and in Industry; very useful for
automating tasks and working remotely. Do not overlook!!! Will be tested on both
Quizzes and Final Exam.

CSci 127 (Hunter) Lecture 3 11 February 2020 2 / 46

Frequently Asked Questions
From lecture slips & emails.

What does it mean that this course is hybrid?
Instead of having a second weekly lecture, you work independently through the
weekly Online Lab: reinforces material introduced in lecture, introduces new
material, and provide knowledge necessary to work on programming assignments.

Can I work ahead on programs?
Absolutely!!! You should be 5 or so programs ahead. If you are working on today’s
program you are already falling behind!!!

What do you mean by Input and Output?
Input is data provided to a program each time it runs (e.g. input() in Lab2);
Output is data produced by a program each time it runs (e.g. display text or
graphics on screen). Not all programs have Input or Output.

I don’t understand the ASCII Table?
Intro/Survey course: introduce high-level concepts before low-level. Cannot store
characters on a computer chip, only numbers. ASCII is simply an agreement on
how to map characters to numbers so they can be stored on computer chips.

Why are we learning about the command line?
Starting with Lab2, bottom section will introduce shell commands. Command line
is widely used among Computer Scientists and in Industry; very useful for
automating tasks and working remotely. Do not overlook!!! Will be tested on both
Quizzes and Final Exam.

CSci 127 (Hunter) Lecture 3 11 February 2020 2 / 46

Frequently Asked Questions
From lecture slips & emails.

What does it mean that this course is hybrid?
Instead of having a second weekly lecture, you work independently through the
weekly Online Lab: reinforces material introduced in lecture, introduces new
material, and provide knowledge necessary to work on programming assignments.

Can I work ahead on programs?
Absolutely!!! You should be 5 or so programs ahead. If you are working on today’s
program you are already falling behind!!!

What do you mean by Input and Output?
Input is data provided to a program each time it runs (e.g. input() in Lab2);
Output is data produced by a program each time it runs (e.g. display text or
graphics on screen). Not all programs have Input or Output.

I don’t understand the ASCII Table?

Intro/Survey course: introduce high-level concepts before low-level. Cannot store
characters on a computer chip, only numbers. ASCII is simply an agreement on
how to map characters to numbers so they can be stored on computer chips.

Why are we learning about the command line?
Starting with Lab2, bottom section will introduce shell commands. Command line
is widely used among Computer Scientists and in Industry; very useful for
automating tasks and working remotely. Do not overlook!!! Will be tested on both
Quizzes and Final Exam.

CSci 127 (Hunter) Lecture 3 11 February 2020 2 / 46

Frequently Asked Questions
From lecture slips & emails.

What does it mean that this course is hybrid?
Instead of having a second weekly lecture, you work independently through the
weekly Online Lab: reinforces material introduced in lecture, introduces new
material, and provide knowledge necessary to work on programming assignments.

Can I work ahead on programs?
Absolutely!!! You should be 5 or so programs ahead. If you are working on today’s
program you are already falling behind!!!

What do you mean by Input and Output?
Input is data provided to a program each time it runs (e.g. input() in Lab2);
Output is data produced by a program each time it runs (e.g. display text or
graphics on screen). Not all programs have Input or Output.

I don’t understand the ASCII Table?
Intro/Survey course: introduce high-level concepts before low-level. Cannot store
characters on a computer chip, only numbers. ASCII is simply an agreement on
how to map characters to numbers so they can be stored on computer chips.

Why are we learning about the command line?
Starting with Lab2, bottom section will introduce shell commands. Command line
is widely used among Computer Scientists and in Industry; very useful for
automating tasks and working remotely. Do not overlook!!! Will be tested on both
Quizzes and Final Exam.

CSci 127 (Hunter) Lecture 3 11 February 2020 2 / 46

Frequently Asked Questions
From lecture slips & emails.

What does it mean that this course is hybrid?
Instead of having a second weekly lecture, you work independently through the
weekly Online Lab: reinforces material introduced in lecture, introduces new
material, and provide knowledge necessary to work on programming assignments.

Can I work ahead on programs?
Absolutely!!! You should be 5 or so programs ahead. If you are working on today’s
program you are already falling behind!!!

What do you mean by Input and Output?
Input is data provided to a program each time it runs (e.g. input() in Lab2);
Output is data produced by a program each time it runs (e.g. display text or
graphics on screen). Not all programs have Input or Output.

I don’t understand the ASCII Table?
Intro/Survey course: introduce high-level concepts before low-level. Cannot store
characters on a computer chip, only numbers. ASCII is simply an agreement on
how to map characters to numbers so they can be stored on computer chips.

Why are we learning about the command line?

Starting with Lab2, bottom section will introduce shell commands. Command line
is widely used among Computer Scientists and in Industry; very useful for
automating tasks and working remotely. Do not overlook!!! Will be tested on both
Quizzes and Final Exam.

CSci 127 (Hunter) Lecture 3 11 February 2020 2 / 46

Frequently Asked Questions
From lecture slips & emails.

What does it mean that this course is hybrid?
Instead of having a second weekly lecture, you work independently through the
weekly Online Lab: reinforces material introduced in lecture, introduces new
material, and provide knowledge necessary to work on programming assignments.

Can I work ahead on programs?
Absolutely!!! You should be 5 or so programs ahead. If you are working on today’s
program you are already falling behind!!!

What do you mean by Input and Output?
Input is data provided to a program each time it runs (e.g. input() in Lab2);
Output is data produced by a program each time it runs (e.g. display text or
graphics on screen). Not all programs have Input or Output.

I don’t understand the ASCII Table?
Intro/Survey course: introduce high-level concepts before low-level. Cannot store
characters on a computer chip, only numbers. ASCII is simply an agreement on
how to map characters to numbers so they can be stored on computer chips.

Why are we learning about the command line?
Starting with Lab2, bottom section will introduce shell commands. Command line
is widely used among Computer Scientists and in Industry; very useful for
automating tasks and working remotely. Do not overlook!!! Will be tested on both
Quizzes and Final Exam.
CSci 127 (Hunter) Lecture 3 11 February 2020 2 / 46

Frequently Asked Questions
From lecture slips & emails.

What does it mean that this course is hybrid?
Instead of having a second weekly lecture, you work independently through the
weekly Online Lab: reinforces material introduced in lecture, introduces new
material, and provide knowledge necessary to work on programming assignments.

Can I work ahead on programs?
Absolutely!!! You should be 5 or so programs ahead. If you are working on today’s
program you are already falling behind!!!

What do you mean by Input and Output?
Input is data provided to a program each time it runs (e.g. input() in Lab2);
Output is data produced by a program each time it runs (e.g. display text or
graphics on screen). Not all programs have Input or Output.

I don’t understand the ASCII Table?
Intro/Survey course: introduce high-level concepts before low-level. Cannot store
characters on a computer chip, only numbers. ASCII is simply an agreement on
how to map characters to numbers so they can be stored on computer chips.

Why are we learning about the command line?
Starting with Lab2, bottom section will introduce shell commands. Command line
is widely used among Computer Scientists and in Industry; very useful for
automating tasks and working remotely. Do not overlook!!! Will be tested on both
Quizzes and Final Exam.
CSci 127 (Hunter) Lecture 3 11 February 2020 2 / 46

Today’s Topics

Research Survey

More on Strings

Arithmetic

Indexing and Slicing Lists

Colors & Hexadecimal Notation

CSci 127 (Hunter) Lecture 3 11 February 2020 3 / 46

Today’s Topics

Research Survey

More on Strings

Arithmetic

Indexing and Slicing Lists

Colors & Hexadecimal Notation

CSci 127 (Hunter) Lecture 3 11 February 2020 4 / 46

Why All the Handouts Today?

Lecture 2, CSci 127
Spring 2019

Name:

EmpID:

1. What is printed? Write your answer for each in the output box.

months = ["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"]

#Indices: 0 1 2 3 4 5 6 7 8 9 10 11

#Or: -3 -2 -1

half = months[6]

print(half.upper())

print(months[-1].lower())

start = 9

print(months[start-1])

term = 3

print(months[(start+term-1)%12])

Output:

2. Wrap-up: On which topic do you wish we had spent more time? Why?

Please only answer these questions if you have consented to participating in the study.
Very slightly or not at all A little Moderately Quite a bit Extremely

I enjoyed class today ⇤ ⇤ ⇤ ⇤ ⇤
I paid attention in class today ⇤ ⇤ ⇤ ⇤ ⇤

Lecture Slip Overview Consent Form Survey

CSci 127 (Hunter) Lecture 3 11 February 2020 5 / 46

Research Study

This study investigates students’ emotions, cognitions, motivation, and
learning related to computer science.

Prof. John Ranellucci

Educational Psychology

Part 1: Consists of two brief surveys completed in class.

Part 2: I’m asking you to answer three extra questions at
the end of your “lecture slips”.

Part 3: Consists of six questions per week for 10 weeks
(three before class and three after class) via text
message.
(Participants will be compensated with a $20
Amazon gift certificate for completing the
text-message portion of the survey - $1 for
3-question sets)

This study is not part of the class, and no individual
analyses will be shared with your instructor.

CSci 127 (Hunter) Lecture 3 11 February 2020 6 / 46

Research Study

This study investigates students’ emotions, cognitions, motivation, and
learning related to computer science.

Prof. John Ranellucci

Educational Psychology

Part 1: Consists of two brief surveys completed in class.

Part 2: I’m asking you to answer three extra questions at
the end of your “lecture slips”.

Part 3: Consists of six questions per week for 10 weeks
(three before class and three after class) via text
message.
(Participants will be compensated with a $20
Amazon gift certificate for completing the
text-message portion of the survey - $1 for
3-question sets)

This study is not part of the class, and no individual
analyses will be shared with your instructor.

CSci 127 (Hunter) Lecture 3 11 February 2020 6 / 46

Research Study

This study investigates students’ emotions, cognitions, motivation, and
learning related to computer science.

Prof. John Ranellucci

Educational Psychology

Part 1: Consists of two brief surveys completed in class.

Part 2: I’m asking you to answer three extra questions at
the end of your “lecture slips”.

Part 3: Consists of six questions per week for 10 weeks
(three before class and three after class) via text
message.

(Participants will be compensated with a $20
Amazon gift certificate for completing the
text-message portion of the survey - $1 for
3-question sets)

This study is not part of the class, and no individual
analyses will be shared with your instructor.

CSci 127 (Hunter) Lecture 3 11 February 2020 6 / 46

Research Study

This study investigates students’ emotions, cognitions, motivation, and
learning related to computer science.

Prof. John Ranellucci

Educational Psychology

Part 1: Consists of two brief surveys completed in class.

Part 2: I’m asking you to answer three extra questions at
the end of your “lecture slips”.

Part 3: Consists of six questions per week for 10 weeks
(three before class and three after class) via text
message.
(Participants will be compensated with a $20
Amazon gift certificate for completing the
text-message portion of the survey - $1 for
3-question sets)

This study is not part of the class, and no individual
analyses will be shared with your instructor.

CSci 127 (Hunter) Lecture 3 11 February 2020 6 / 46

Research Study

This study investigates students’ emotions, cognitions, motivation, and
learning related to computer science.

Prof. John Ranellucci

Educational Psychology

Part 1: Consists of two brief surveys completed in class.

Part 2: I’m asking you to answer three extra questions at
the end of your “lecture slips”.

Part 3: Consists of six questions per week for 10 weeks
(three before class and three after class) via text
message.
(Participants will be compensated with a $20
Amazon gift certificate for completing the
text-message portion of the survey - $1 for
3-question sets)

This study is not part of the class, and no individual
analyses will be shared with your instructor.

CSci 127 (Hunter) Lecture 3 11 February 2020 6 / 46

Today’s Topics

Research Survey

More on Strings

Arithmetic

Indexing and Slicing Lists

Colors & Hexadecimal Notation

CSci 127 (Hunter) Lecture 3 11 February 2020 7 / 46

More on Strings...

From Final Exam, Fall 2017, Version 1, #1:

CSci 127 (Hunter) Lecture 3 11 February 2020 8 / 46

More on Strings...

Some we have seen before, some we haven’t.

Don’t leave it blank– write what you know & puzzle out as much as possible.

First, go through and write down what we know:

I There are 3 print().
I Output will have at least:

There are ??? fun days in a week

Two of them are ???

My favorite ??? is Saturday.

Will get 1/3 to 1/2 points for writing down the basic structure.

CSci 127 (Hunter) Lecture 3 11 February 2020 9 / 46

More on Strings...

Some we have seen before, some we haven’t.

Don’t leave it blank– write what you know & puzzle out as much as possible.

First, go through and write down what we know:

I There are 3 print().
I Output will have at least:

There are ??? fun days in a week

Two of them are ???

My favorite ??? is Saturday.

Will get 1/3 to 1/2 points for writing down the basic structure.

CSci 127 (Hunter) Lecture 3 11 February 2020 9 / 46

More on Strings...

Some we have seen before, some we haven’t.

Don’t leave it blank– write what you know & puzzle out as much as possible.

First, go through and write down what we know:

I There are 3 print().
I Output will have at least:

There are ??? fun days in a week

Two of them are ???

My favorite ??? is Saturday.

Will get 1/3 to 1/2 points for writing down the basic structure.

CSci 127 (Hunter) Lecture 3 11 February 2020 9 / 46

More on Strings...

Some we have seen before, some we haven’t.

Don’t leave it blank– write what you know & puzzle out as much as possible.

First, go through and write down what we know:

I There are 3 print().

I Output will have at least:
There are ??? fun days in a week

Two of them are ???

My favorite ??? is Saturday.

Will get 1/3 to 1/2 points for writing down the basic structure.

CSci 127 (Hunter) Lecture 3 11 February 2020 9 / 46

More on Strings...

Some we have seen before, some we haven’t.

Don’t leave it blank– write what you know & puzzle out as much as possible.

First, go through and write down what we know:

I There are 3 print().
I Output will have at least:

There are ??? fun days in a week

Two of them are ???

My favorite ??? is Saturday.

Will get 1/3 to 1/2 points for writing down the basic structure.

CSci 127 (Hunter) Lecture 3 11 February 2020 9 / 46

More on Strings...

Some we have seen before, some we haven’t.

Don’t leave it blank– write what you know & puzzle out as much as possible.

First, go through and write down what we know:

I There are 3 print().
I Output will have at least:

There are ??? fun days in a week

Two of them are ???

My favorite ??? is Saturday.

Will get 1/3 to 1/2 points for writing down the basic structure.

CSci 127 (Hunter) Lecture 3 11 February 2020 9 / 46

More on Strings...

Some we have seen before, some we haven’t.

Don’t leave it blank– write what you know & puzzle out as much as possible.

First, go through and write down what we know:

I There are 3 print().
I Output will have at least:

There are ??? fun days in a week

Two of them are ???

My favorite ??? is Saturday.

Will get 1/3 to 1/2 points for writing down the basic structure.

CSci 127 (Hunter) Lecture 3 11 February 2020 9 / 46

More on Strings...

Some we have seen before, some we haven’t.

Don’t leave it blank– write what you know & puzzle out as much as possible.

First, go through and write down what we know:

I There are 3 print().
I Output will have at least:

There are ??? fun days in a week

Two of them are ???

My favorite ??? is Saturday.

Will get 1/3 to 1/2 points for writing down the basic structure.

CSci 127 (Hunter) Lecture 3 11 February 2020 9 / 46

More on Strings...

Some we have seen before, some we haven’t.

Don’t leave it blank– write what you know & puzzle out as much as possible.

First, go through and write down what we know:

I There are 3 print().
I Output will have at least:

There are ??? fun days in a week

Two of them are ???

My favorite ??? is Saturday.

Will get 1/3 to 1/2 points for writing down the basic structure.

CSci 127 (Hunter) Lecture 3 11 February 2020 9 / 46

More on Strings: String Methods

s = "FridaysSaturdaysSundays"
num = s.count("s")

The first line creates a variable, called s, that stores the string:
"FridaysSaturdaysSundays"

There are many useful functions for strings (more in Lab 2).

s.count(x) will count the number of times the pattern, x,
appears in s.

I s.count("s") counts the number of lower case s that occurs.
I num = s.count("s") stores the result in the variable num, for later.
I What would print(s.count("sS")) output?
I What about:

mess = "10 20 21 9 101 35"

mults = mess.count("0 ")

print(mults)

CSci 127 (Hunter) Lecture 3 11 February 2020 10 / 46

More on Strings: String Methods

s = "FridaysSaturdaysSundays"
num = s.count("s")

The first line creates a variable, called s, that stores the string:
"FridaysSaturdaysSundays"

There are many useful functions for strings (more in Lab 2).

s.count(x) will count the number of times the pattern, x,
appears in s.

I s.count("s") counts the number of lower case s that occurs.
I num = s.count("s") stores the result in the variable num, for later.
I What would print(s.count("sS")) output?
I What about:

mess = "10 20 21 9 101 35"

mults = mess.count("0 ")

print(mults)

CSci 127 (Hunter) Lecture 3 11 February 2020 10 / 46

More on Strings: String Methods

s = "FridaysSaturdaysSundays"
num = s.count("s")

The first line creates a variable, called s, that stores the string:
"FridaysSaturdaysSundays"

There are many useful functions for strings (more in Lab 2).

s.count(x) will count the number of times the pattern, x,
appears in s.

I s.count("s") counts the number of lower case s that occurs.
I num = s.count("s") stores the result in the variable num, for later.
I What would print(s.count("sS")) output?
I What about:

mess = "10 20 21 9 101 35"

mults = mess.count("0 ")

print(mults)

CSci 127 (Hunter) Lecture 3 11 February 2020 10 / 46

More on Strings: String Methods

s = "FridaysSaturdaysSundays"
num = s.count("s")

The first line creates a variable, called s, that stores the string:
"FridaysSaturdaysSundays"

There are many useful functions for strings (more in Lab 2).

s.count(x) will count the number of times the pattern, x,
appears in s.

I s.count("s") counts the number of lower case s that occurs.

I num = s.count("s") stores the result in the variable num, for later.
I What would print(s.count("sS")) output?
I What about:

mess = "10 20 21 9 101 35"

mults = mess.count("0 ")

print(mults)

CSci 127 (Hunter) Lecture 3 11 February 2020 10 / 46

More on Strings: String Methods

s = "FridaysSaturdaysSundays"
num = s.count("s")

The first line creates a variable, called s, that stores the string:
"FridaysSaturdaysSundays"

There are many useful functions for strings (more in Lab 2).

s.count(x) will count the number of times the pattern, x,
appears in s.

I s.count("s") counts the number of lower case s that occurs.
I num = s.count("s") stores the result in the variable num, for later.

I What would print(s.count("sS")) output?
I What about:

mess = "10 20 21 9 101 35"

mults = mess.count("0 ")

print(mults)

CSci 127 (Hunter) Lecture 3 11 February 2020 10 / 46

More on Strings: String Methods

s = "FridaysSaturdaysSundays"
num = s.count("s")

The first line creates a variable, called s, that stores the string:
"FridaysSaturdaysSundays"

There are many useful functions for strings (more in Lab 2).

s.count(x) will count the number of times the pattern, x,
appears in s.

I s.count("s") counts the number of lower case s that occurs.
I num = s.count("s") stores the result in the variable num, for later.
I What would print(s.count("sS")) output?

I What about:
mess = "10 20 21 9 101 35"

mults = mess.count("0 ")

print(mults)

CSci 127 (Hunter) Lecture 3 11 February 2020 10 / 46

More on Strings: String Methods

s = "FridaysSaturdaysSundays"
num = s.count("s")

The first line creates a variable, called s, that stores the string:
"FridaysSaturdaysSundays"

There are many useful functions for strings (more in Lab 2).

s.count(x) will count the number of times the pattern, x,
appears in s.

I s.count("s") counts the number of lower case s that occurs.
I num = s.count("s") stores the result in the variable num, for later.
I What would print(s.count("sS")) output?
I What about:

mess = "10 20 21 9 101 35"

mults = mess.count("0 ")

print(mults)

CSci 127 (Hunter) Lecture 3 11 February 2020 10 / 46

More on Strings...

Don’t leave it blank– write what you know & puzzle out as much as possible:

There are 3 fun days in a week

Two of them are ???

My favorite ??? is Saturday.

CSci 127 (Hunter) Lecture 3 11 February 2020 11 / 46

More on Strings...

Don’t leave it blank– write what you know & puzzle out as much as possible:

There are 3 fun days in a week

Two of them are ???

My favorite ??? is Saturday.

CSci 127 (Hunter) Lecture 3 11 February 2020 11 / 46

More on Strings: Indexing & Substrings

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

Strings are made up of individual characters (letters, numbers, etc.)

Useful to be able to refer to pieces of a string, either an individual
location or a “substring” of the string.

0 1 2 3 4 5 6 7 8 ... 16 17 18 19 20 21 22

F r i d a y s S a ... S u n d a y s

... -4 -3 -2 -1

CSci 127 (Hunter) Lecture 3 11 February 2020 12 / 46

More on Strings: Indexing & Substrings

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

Strings are made up of individual characters (letters, numbers, etc.)

Useful to be able to refer to pieces of a string, either an individual
location or a “substring” of the string.

0 1 2 3 4 5 6 7 8 ... 16 17 18 19 20 21 22

F r i d a y s S a ... S u n d a y s

... -4 -3 -2 -1

CSci 127 (Hunter) Lecture 3 11 February 2020 12 / 46

More on Strings: Indexing & Substrings

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

Strings are made up of individual characters (letters, numbers, etc.)

Useful to be able to refer to pieces of a string, either an individual
location or a “substring” of the string.

0 1 2 3 4 5 6 7 8 ... 16 17 18 19 20 21 22

F r i d a y s S a ... S u n d a y s

... -4 -3 -2 -1

CSci 127 (Hunter) Lecture 3 11 February 2020 12 / 46

More on Strings: Indexing & Substrings

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

Strings are made up of individual characters (letters, numbers, etc.)

Useful to be able to refer to pieces of a string, either an individual
location or a “substring” of the string.

0 1 2 3 4 5 6 7 8 ... 16 17 18 19 20 21 22

F r i d a y s S a ... S u n d a y s

... -4 -3 -2 -1

CSci 127 (Hunter) Lecture 3 11 February 2020 12 / 46

More on Strings: Indexing & Substrings

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

Strings are made up of individual characters (letters, numbers, etc.)

Useful to be able to refer to pieces of a string, either an individual
location or a “substring” of the string.

0 1 2 3 4 5 6 7 8 ... 16 17 18 19 20 21 22

F r i d a y s S a ... S u n d a y s

... -4 -3 -2 -1

s[0] is

’F’.

CSci 127 (Hunter) Lecture 3 11 February 2020 13 / 46

More on Strings: Indexing & Substrings

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

Strings are made up of individual characters (letters, numbers, etc.)

Useful to be able to refer to pieces of a string, either an individual
location or a “substring” of the string.

0 1 2 3 4 5 6 7 8 ... 16 17 18 19 20 21 22

F r i d a y s S a ... S u n d a y s

... -4 -3 -2 -1

s[0] is ’F’.

CSci 127 (Hunter) Lecture 3 11 February 2020 13 / 46

More on Strings: Indexing & Substrings

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

Strings are made up of individual characters (letters, numbers, etc.)

Useful to be able to refer to pieces of a string, either an individual
location or a “substring” of the string.

0 1 2 3 4 5 6 7 8 ... 16 17 18 19 20 21 22

F r i d a y s S a ... S u n d a y s

... -4 -3 -2 -1

s[1] is

’r’.

CSci 127 (Hunter) Lecture 3 11 February 2020 14 / 46

More on Strings: Indexing & Substrings

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

Strings are made up of individual characters (letters, numbers, etc.)

Useful to be able to refer to pieces of a string, either an individual
location or a “substring” of the string.

0 1 2 3 4 5 6 7 8 ... 16 17 18 19 20 21 22

F r i d a y s S a ... S u n d a y s

... -4 -3 -2 -1

s[1] is ’r’.

CSci 127 (Hunter) Lecture 3 11 February 2020 14 / 46

More on Strings: Indexing & Substrings

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

Strings are made up of individual characters (letters, numbers, etc.)

Useful to be able to refer to pieces of a string, either an individual
location or a “substring” of the string.

0 1 2 3 4 5 6 7 8 ... 16 17 18 19 20 21 22

F r i d a y s S a ... S u n d a y s

... -4 -3 -2 -1

s[-1] is

’s’.

CSci 127 (Hunter) Lecture 3 11 February 2020 15 / 46

More on Strings: Indexing & Substrings

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

Strings are made up of individual characters (letters, numbers, etc.)

Useful to be able to refer to pieces of a string, either an individual
location or a “substring” of the string.

0 1 2 3 4 5 6 7 8 ... 16 17 18 19 20 21 22

F r i d a y s S a ... S u n d a y s

... -4 -3 -2 -1

s[-1] is ’s’.

CSci 127 (Hunter) Lecture 3 11 February 2020 15 / 46

More on Strings: Indexing & Substrings

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

Strings are made up of individual characters (letters, numbers, etc.)

Useful to be able to refer to pieces of a string, either an individual
location or a “substring” of the string.

0 1 2 3 4 5 6 7 8 ... 16 17 18 19 20 21 22

F r i d a y s S a ... S u n d a y s

... -4 -3 -2 -1

s[3:6] is

’day’.

CSci 127 (Hunter) Lecture 3 11 February 2020 16 / 46

More on Strings: Indexing & Substrings

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

Strings are made up of individual characters (letters, numbers, etc.)

Useful to be able to refer to pieces of a string, either an individual
location or a “substring” of the string.

0 1 2 3 4 5 6 7 8 ... 16 17 18 19 20 21 22

F r i d a y s S a ... S u n d a y s

... -4 -3 -2 -1

s[3:6] is ’day’.

CSci 127 (Hunter) Lecture 3 11 February 2020 16 / 46

More on Strings: Indexing & Substrings

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

Strings are made up of individual characters (letters, numbers, etc.)

Useful to be able to refer to pieces of a string, either an individual
location or a “substring” of the string.

0 1 2 3 4 5 6 7 8 ... 16 17 18 19 20 21 22

F r i d a y s S a ... S u n d a y s

... -4 -3 -2 -1

s[:3] is

’Fri’.

CSci 127 (Hunter) Lecture 3 11 February 2020 17 / 46

More on Strings: Indexing & Substrings

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

Strings are made up of individual characters (letters, numbers, etc.)

Useful to be able to refer to pieces of a string, either an individual
location or a “substring” of the string.

0 1 2 3 4 5 6 7 8 ... 16 17 18 19 20 21 22

F r i d a y s S a ... S u n d a y s

... -4 -3 -2 -1

s[:3] is ’Fri’.

CSci 127 (Hunter) Lecture 3 11 February 2020 17 / 46

More on Strings: Indexing & Substrings

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

Strings are made up of individual characters (letters, numbers, etc.)

Useful to be able to refer to pieces of a string, either an individual
location or a “substring” of the string.

0 1 2 3 4 5 6 7 8 ... 16 17 18 19 20 21 22

F r i d a y s S a ... S u n d a y s

... -4 -3 -2 -1

s[:-1] is

’FridaysSaturdaysSunday’.
(no trailing ’s’ at the end)

CSci 127 (Hunter) Lecture 3 11 February 2020 18 / 46

More on Strings: Indexing & Substrings

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

Strings are made up of individual characters (letters, numbers, etc.)

Useful to be able to refer to pieces of a string, either an individual
location or a “substring” of the string.

0 1 2 3 4 5 6 7 8 ... 16 17 18 19 20 21 22

F r i d a y s S a ... S u n d a y s

... -4 -3 -2 -1

s[:-1] is ’FridaysSaturdaysSunday’.
(no trailing ’s’ at the end)

CSci 127 (Hunter) Lecture 3 11 February 2020 18 / 46

More on Strings: Splits

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

split() divides a string into a list.

Cross out the delimiter, and the remaining items are the list.

"FridaysXSaturdaysXSunday"
days = [’Friday’, ’Saturday’, ’Sunday’]

Different delimiters give different lists:

days = s[:-1].split("day")

"FridXaXyXsSaturdXaXyXsSundXaXyX"
days = [’Fri’, ’sSatur’, ’sSun’]

CSci 127 (Hunter) Lecture 3 11 February 2020 19 / 46

More on Strings: Splits

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

split() divides a string into a list.

Cross out the delimiter, and the remaining items are the list.

"FridaysXSaturdaysXSunday"
days = [’Friday’, ’Saturday’, ’Sunday’]

Different delimiters give different lists:

days = s[:-1].split("day")

"FridXaXyXsSaturdXaXyXsSundXaXyX"
days = [’Fri’, ’sSatur’, ’sSun’]

CSci 127 (Hunter) Lecture 3 11 February 2020 19 / 46

More on Strings: Splits

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

split() divides a string into a list.

Cross out the delimiter, and the remaining items are the list.

"FridaysXSaturdaysXSunday"

days = [’Friday’, ’Saturday’, ’Sunday’]

Different delimiters give different lists:

days = s[:-1].split("day")

"FridXaXyXsSaturdXaXyXsSundXaXyX"
days = [’Fri’, ’sSatur’, ’sSun’]

CSci 127 (Hunter) Lecture 3 11 February 2020 19 / 46

More on Strings: Splits

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

split() divides a string into a list.

Cross out the delimiter, and the remaining items are the list.

"FridaysXSaturdaysXSunday"
days = [’Friday’, ’Saturday’, ’Sunday’]

Different delimiters give different lists:

days = s[:-1].split("day")

"FridXaXyXsSaturdXaXyXsSundXaXyX"
days = [’Fri’, ’sSatur’, ’sSun’]

CSci 127 (Hunter) Lecture 3 11 February 2020 19 / 46

More on Strings: Splits

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

split() divides a string into a list.

Cross out the delimiter, and the remaining items are the list.

"FridaysXSaturdaysXSunday"
days = [’Friday’, ’Saturday’, ’Sunday’]

Different delimiters give different lists:

days = s[:-1].split("day")

"FridXaXyXsSaturdXaXyXsSundXaXyX"
days = [’Fri’, ’sSatur’, ’sSun’]

CSci 127 (Hunter) Lecture 3 11 February 2020 19 / 46

More on Strings: Splits

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

split() divides a string into a list.

Cross out the delimiter, and the remaining items are the list.

"FridaysXSaturdaysXSunday"
days = [’Friday’, ’Saturday’, ’Sunday’]

Different delimiters give different lists:

days = s[:-1].split("day")

"FridXaXyXsSaturdXaXyXsSundXaXyX"
days = [’Fri’, ’sSatur’, ’sSun’]

CSci 127 (Hunter) Lecture 3 11 February 2020 19 / 46

More on Strings: Splits

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

split() divides a string into a list.

Cross out the delimiter, and the remaining items are the list.

"FridaysXSaturdaysXSunday"
days = [’Friday’, ’Saturday’, ’Sunday’]

Different delimiters give different lists:

days = s[:-1].split("day")

"FridXaXyXsSaturdXaXyXsSundXaXyX"

days = [’Fri’, ’sSatur’, ’sSun’]

CSci 127 (Hunter) Lecture 3 11 February 2020 19 / 46

More on Strings: Splits

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

split() divides a string into a list.

Cross out the delimiter, and the remaining items are the list.

"FridaysXSaturdaysXSunday"
days = [’Friday’, ’Saturday’, ’Sunday’]

Different delimiters give different lists:

days = s[:-1].split("day")

"FridXaXyXsSaturdXaXyXsSundXaXyX"
days = [’Fri’, ’sSatur’, ’sSun’]

CSci 127 (Hunter) Lecture 3 11 February 2020 19 / 46

More on Strings...

Don’t leave it blank– write what you know & puzzle out as much as possible:

There are 3 fun days in a week

Two of them are Friday Sunday

My favorite ??? is Saturday.

CSci 127 (Hunter) Lecture 3 11 February 2020 20 / 46

More on Strings...

Don’t leave it blank– write what you know & puzzle out as much as possible:

There are 3 fun days in a week

Two of them are Friday Sunday

My favorite ??? is Saturday.

CSci 127 (Hunter) Lecture 3 11 February 2020 20 / 46

Today’s Topics

Research Survey

More on Strings

Arithmetic

Indexing and Slicing Lists

Colors & Hexadecimal Notation

CSci 127 (Hunter) Lecture 3 11 February 2020 21 / 46

Arithmetic

Some arithmetic operators in Python:

Addition:

sum = sum + 3

Subtraction: deb = deb - item

Multiplication: area = h * w

Division: ave = total / n

Floor or Integer Division:
weeks = totalDays // 7 15 // 7 = 2

Remainder or Modulus:
days = totalDays % 7 15 % 7 = 1

Exponentiaion:
pop = 2**time

CSci 127 (Hunter) Lecture 3 11 February 2020 22 / 46

Arithmetic

Some arithmetic operators in Python:

Addition: sum = sum + 3

Subtraction: deb = deb - item

Multiplication: area = h * w

Division: ave = total / n

Floor or Integer Division:
weeks = totalDays // 7 15 // 7 = 2

Remainder or Modulus:
days = totalDays % 7 15 % 7 = 1

Exponentiaion:
pop = 2**time

CSci 127 (Hunter) Lecture 3 11 February 2020 22 / 46

Arithmetic

Some arithmetic operators in Python:

Addition: sum = sum + 3

Subtraction:

deb = deb - item

Multiplication: area = h * w

Division: ave = total / n

Floor or Integer Division:
weeks = totalDays // 7 15 // 7 = 2

Remainder or Modulus:
days = totalDays % 7 15 % 7 = 1

Exponentiaion:
pop = 2**time

CSci 127 (Hunter) Lecture 3 11 February 2020 22 / 46

Arithmetic

Some arithmetic operators in Python:

Addition: sum = sum + 3

Subtraction: deb = deb - item

Multiplication: area = h * w

Division: ave = total / n

Floor or Integer Division:
weeks = totalDays // 7 15 // 7 = 2

Remainder or Modulus:
days = totalDays % 7 15 % 7 = 1

Exponentiaion:
pop = 2**time

CSci 127 (Hunter) Lecture 3 11 February 2020 22 / 46

Arithmetic

Some arithmetic operators in Python:

Addition: sum = sum + 3

Subtraction: deb = deb - item

Multiplication:

area = h * w

Division: ave = total / n

Floor or Integer Division:
weeks = totalDays // 7 15 // 7 = 2

Remainder or Modulus:
days = totalDays % 7 15 % 7 = 1

Exponentiaion:
pop = 2**time

CSci 127 (Hunter) Lecture 3 11 February 2020 22 / 46

Arithmetic

Some arithmetic operators in Python:

Addition: sum = sum + 3

Subtraction: deb = deb - item

Multiplication: area = h * w

Division: ave = total / n

Floor or Integer Division:
weeks = totalDays // 7 15 // 7 = 2

Remainder or Modulus:
days = totalDays % 7 15 % 7 = 1

Exponentiaion:
pop = 2**time

CSci 127 (Hunter) Lecture 3 11 February 2020 22 / 46

Arithmetic

Some arithmetic operators in Python:

Addition: sum = sum + 3

Subtraction: deb = deb - item

Multiplication: area = h * w

Division:

ave = total / n

Floor or Integer Division:
weeks = totalDays // 7 15 // 7 = 2

Remainder or Modulus:
days = totalDays % 7 15 % 7 = 1

Exponentiaion:
pop = 2**time

CSci 127 (Hunter) Lecture 3 11 February 2020 22 / 46

Arithmetic

Some arithmetic operators in Python:

Addition: sum = sum + 3

Subtraction: deb = deb - item

Multiplication: area = h * w

Division: ave = total / n

Floor or Integer Division:
weeks = totalDays // 7 15 // 7 = 2

Remainder or Modulus:
days = totalDays % 7 15 % 7 = 1

Exponentiaion:
pop = 2**time

CSci 127 (Hunter) Lecture 3 11 February 2020 22 / 46

Arithmetic

Some arithmetic operators in Python:

Addition: sum = sum + 3

Subtraction: deb = deb - item

Multiplication: area = h * w

Division: ave = total / n

Floor or Integer Division:

weeks = totalDays // 7 15 // 7 = 2

Remainder or Modulus:
days = totalDays % 7 15 % 7 = 1

Exponentiaion:
pop = 2**time

CSci 127 (Hunter) Lecture 3 11 February 2020 22 / 46

Arithmetic

Some arithmetic operators in Python:

Addition: sum = sum + 3

Subtraction: deb = deb - item

Multiplication: area = h * w

Division: ave = total / n

Floor or Integer Division:
weeks = totalDays // 7 15 // 7 = 2

Remainder or Modulus:
days = totalDays % 7 15 % 7 = 1

Exponentiaion:
pop = 2**time

CSci 127 (Hunter) Lecture 3 11 February 2020 22 / 46

Arithmetic

Some arithmetic operators in Python:

Addition: sum = sum + 3

Subtraction: deb = deb - item

Multiplication: area = h * w

Division: ave = total / n

Floor or Integer Division:
weeks = totalDays // 7 15 // 7 = 2

Remainder or Modulus:

days = totalDays % 7 15 % 7 = 1

Exponentiaion:
pop = 2**time

CSci 127 (Hunter) Lecture 3 11 February 2020 22 / 46

Arithmetic

Some arithmetic operators in Python:

Addition: sum = sum + 3

Subtraction: deb = deb - item

Multiplication: area = h * w

Division: ave = total / n

Floor or Integer Division:
weeks = totalDays // 7 15 // 7 = 2

Remainder or Modulus:
days = totalDays % 7 15 % 7 = 1

Exponentiaion:
pop = 2**time

CSci 127 (Hunter) Lecture 3 11 February 2020 22 / 46

Arithmetic

Some arithmetic operators in Python:

Addition: sum = sum + 3

Subtraction: deb = deb - item

Multiplication: area = h * w

Division: ave = total / n

Floor or Integer Division:
weeks = totalDays // 7 15 // 7 = 2

Remainder or Modulus:
days = totalDays % 7 15 % 7 = 1

Exponentiaion:

pop = 2**time

CSci 127 (Hunter) Lecture 3 11 February 2020 22 / 46

Arithmetic

Some arithmetic operators in Python:

Addition: sum = sum + 3

Subtraction: deb = deb - item

Multiplication: area = h * w

Division: ave = total / n

Floor or Integer Division:
weeks = totalDays // 7 15 // 7 = 2

Remainder or Modulus:
days = totalDays % 7 15 % 7 = 1

Exponentiaion:
pop = 2**time

CSci 127 (Hunter) Lecture 3 11 February 2020 22 / 46

In Pairs or Triples...

What does this code do?

In particular, what is printed...

If the user enters, 9 and 2.

If the user enters, 12 and 4.

If the user enters, 8 and 20.

If the user enters, 11 and 1.

CSci 127 (Hunter) Lecture 3 11 February 2020 23 / 46

In Pairs or Triples...

What does this code do?

In particular, what is printed...

If the user enters, 9 and 2.

If the user enters, 12 and 4.

If the user enters, 8 and 20.

If the user enters, 11 and 1.

CSci 127 (Hunter) Lecture 3 11 February 2020 23 / 46

In Pairs or Triples...

What does this code do?

In particular, what is printed...

If the user enters, 9 and 2.

If the user enters, 12 and 4.

If the user enters, 8 and 20.

If the user enters, 11 and 1.

CSci 127 (Hunter) Lecture 3 11 February 2020 23 / 46

In Pairs or Triples...

What does this code do?

In particular, what is printed...

If the user enters, 9 and 2.

If the user enters, 12 and 4.

If the user enters, 8 and 20.

If the user enters, 11 and 1.

CSci 127 (Hunter) Lecture 3 11 February 2020 23 / 46

In Pairs or Triples...

What does this code do?

In particular, what is printed...

If the user enters, 9 and 2.

If the user enters, 12 and 4.

If the user enters, 8 and 20.

If the user enters, 11 and 1.

CSci 127 (Hunter) Lecture 3 11 February 2020 23 / 46

In Pairs or Triples...
What does this code do?

In particular, what is printed...

If the user enters, 9 and 2.

CSci 127 (Hunter) Lecture 3 11 February 2020 24 / 46

In Pairs or Triples...
What does this code do?

In particular, what is printed...

If the user enters, 9 and 2.

CSci 127 (Hunter) Lecture 3 11 February 2020 24 / 46

In Pairs or Triples...
What does this code do?

In particular, what is printed...

If the user enters, 12 and 4.

CSci 127 (Hunter) Lecture 3 11 February 2020 25 / 46

In Pairs or Triples...
What does this code do?

In particular, what is printed...

If the user enters, 12 and 4.

CSci 127 (Hunter) Lecture 3 11 February 2020 25 / 46

In Pairs or Triples...
What does this code do?

In particular, what is printed...

If the user enters, 8 and 20.

CSci 127 (Hunter) Lecture 3 11 February 2020 26 / 46

In Pairs or Triples...
What does this code do?

In particular, what is printed...

If the user enters, 8 and 20.

CSci 127 (Hunter) Lecture 3 11 February 2020 26 / 46

In Pairs or Triples...
What does this code do?

In particular, what is printed...

If the user enters, 11 and 1.

CSci 127 (Hunter) Lecture 3 11 February 2020 27 / 46

In Pairs or Triples...
What does this code do?

In particular, what is printed...

If the user enters, 11 and 1.

CSci 127 (Hunter) Lecture 3 11 February 2020 27 / 46

Today’s Topics

Research Survey

More on Strings

Arithmetic

Indexing and Slicing Lists

Colors & Hexadecimal Notation

CSci 127 (Hunter) Lecture 3 11 February 2020 28 / 46

In Pairs or Triples...

Mostly review:

CSci 127 (Hunter) Lecture 3 11 February 2020 29 / 46

Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 3 11 February 2020 30 / 46

Review: range()

The three versions:

range(stop)

range(start, stop)

range(start, stop, step)

CSci 127 (Hunter) Lecture 3 11 February 2020 31 / 46

Review: range()

The three versions:

range(stop)

range(start, stop)

range(start, stop, step)

CSci 127 (Hunter) Lecture 3 11 February 2020 31 / 46

Review: range()

The three versions:

range(stop)

range(start, stop)

range(start, stop, step)

CSci 127 (Hunter) Lecture 3 11 February 2020 31 / 46

Review: range()

The three versions:

range(stop)

range(start, stop)

range(start, stop, step)

CSci 127 (Hunter) Lecture 3 11 February 2020 31 / 46

Slices

Similar to range(), you can take
portions or slices of lists and strings:

s[5:8]

gives: "Uni"

Also works for lists:

names[1:3]

gives: ["Anna", "Alice"]

Python also lets you “count backwards”:
last element has index: -1.

CSci 127 (Hunter) Lecture 3 11 February 2020 32 / 46

Slices

Similar to range(), you can take
portions or slices of lists and strings:

s[5:8]

gives: "Uni"

Also works for lists:

names[1:3]

gives: ["Anna", "Alice"]

Python also lets you “count backwards”:
last element has index: -1.

CSci 127 (Hunter) Lecture 3 11 February 2020 32 / 46

Slices

Similar to range(), you can take
portions or slices of lists and strings:

s[5:8]

gives: "Uni"

Also works for lists:

names[1:3]

gives: ["Anna", "Alice"]

Python also lets you “count backwards”:
last element has index: -1.

CSci 127 (Hunter) Lecture 3 11 February 2020 32 / 46

Slices

Similar to range(), you can take
portions or slices of lists and strings:

s[5:8]

gives: "Uni"

Also works for lists:

names[1:3]

gives: ["Anna", "Alice"]

Python also lets you “count backwards”:
last element has index: -1.

CSci 127 (Hunter) Lecture 3 11 February 2020 32 / 46

Slices

Similar to range(), you can take
portions or slices of lists and strings:

s[5:8]

gives: "Uni"

Also works for lists:

names[1:3]

gives: ["Anna", "Alice"]

Python also lets you “count backwards”:
last element has index: -1.

CSci 127 (Hunter) Lecture 3 11 February 2020 32 / 46

Slices

Similar to range(), you can take
portions or slices of lists and strings:

s[5:8]

gives: "Uni"

Also works for lists:

names[1:3]

gives: ["Anna", "Alice"]

Python also lets you “count backwards”:
last element has index: -1.

CSci 127 (Hunter) Lecture 3 11 February 2020 32 / 46

Today’s Topics

Arithmetic

Indexing and Slicing Lists

Design Challenge: Planes

Colors & Hexadecimal Notation

CSci 127 (Hunter) Lecture 3 11 February 2020 33 / 46

Colors

Can specify by name.

Can specify by numbers:
I Amount of Red, Green, and Blue (RGB).
I Adding light, not paint:

F Black: 0% red, 0% green, 0% blue
F White: 100% red, 100% green, 100% blue

CSci 127 (Hunter) Lecture 3 11 February 2020 34 / 46

Colors

Can specify by name.

Can specify by numbers:

I Amount of Red, Green, and Blue (RGB).
I Adding light, not paint:

F Black: 0% red, 0% green, 0% blue
F White: 100% red, 100% green, 100% blue

CSci 127 (Hunter) Lecture 3 11 February 2020 34 / 46

Colors

Can specify by name.

Can specify by numbers:
I Amount of Red, Green, and Blue (RGB).

I Adding light, not paint:
F Black: 0% red, 0% green, 0% blue
F White: 100% red, 100% green, 100% blue

CSci 127 (Hunter) Lecture 3 11 February 2020 34 / 46

Colors

Can specify by name.

Can specify by numbers:
I Amount of Red, Green, and Blue (RGB).
I Adding light, not paint:

F Black: 0% red, 0% green, 0% blue
F White: 100% red, 100% green, 100% blue

CSci 127 (Hunter) Lecture 3 11 February 2020 34 / 46

Colors

Can specify by name.

Can specify by numbers:
I Amount of Red, Green, and Blue (RGB).
I Adding light, not paint:

F Black: 0% red, 0% green, 0% blue

F White: 100% red, 100% green, 100% blue

CSci 127 (Hunter) Lecture 3 11 February 2020 34 / 46

Colors

Can specify by name.

Can specify by numbers:
I Amount of Red, Green, and Blue (RGB).
I Adding light, not paint:

F Black: 0% red, 0% green, 0% blue
F White: 100% red, 100% green, 100% blue

CSci 127 (Hunter) Lecture 3 11 February 2020 34 / 46

Colors

Can specify by numbers (RGB):

I Fractions of each:
e.g. (1.0, 0, 0) is 100% red, no green, and no blue.

I 8-bit colors: numbers from 0 to 255:
e.g. (0, 255, 0) is no red, 100% green, and no blue.

I Hexcodes (base-16 numbers)...

CSci 127 (Hunter) Lecture 3 11 February 2020 35 / 46

Colors

Can specify by numbers (RGB):
I Fractions of each:

e.g. (1.0, 0, 0) is 100% red, no green, and no blue.
I 8-bit colors: numbers from 0 to 255:

e.g. (0, 255, 0) is no red, 100% green, and no blue.
I Hexcodes (base-16 numbers)...

CSci 127 (Hunter) Lecture 3 11 February 2020 35 / 46

Colors

Can specify by numbers (RGB):
I Fractions of each:

e.g. (1.0, 0, 0) is 100% red, no green, and no blue.

I 8-bit colors: numbers from 0 to 255:
e.g. (0, 255, 0) is no red, 100% green, and no blue.

I Hexcodes (base-16 numbers)...

CSci 127 (Hunter) Lecture 3 11 February 2020 35 / 46

Colors

Can specify by numbers (RGB):
I Fractions of each:

e.g. (1.0, 0, 0) is 100% red, no green, and no blue.
I 8-bit colors: numbers from 0 to 255:

e.g. (0, 255, 0) is no red, 100% green, and no blue.
I Hexcodes (base-16 numbers)...

CSci 127 (Hunter) Lecture 3 11 February 2020 35 / 46

Colors

Can specify by numbers (RGB):
I Fractions of each:

e.g. (1.0, 0, 0) is 100% red, no green, and no blue.
I 8-bit colors: numbers from 0 to 255:

e.g. (0, 255, 0) is no red, 100% green, and no blue.

I Hexcodes (base-16 numbers)...

CSci 127 (Hunter) Lecture 3 11 February 2020 35 / 46

Colors

Can specify by numbers (RGB):
I Fractions of each:

e.g. (1.0, 0, 0) is 100% red, no green, and no blue.
I 8-bit colors: numbers from 0 to 255:

e.g. (0, 255, 0) is no red, 100% green, and no blue.
I Hexcodes (base-16 numbers)...

CSci 127 (Hunter) Lecture 3 11 February 2020 35 / 46

Decimal & Hexadecimal Numbers

Counting with 10 digits:

(from i-programmer.info)

CSci 127 (Hunter) Lecture 3 11 February 2020 36 / 46

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

101 + 100

Max Number = 99

90 = (9 ∗ 101) + (0 ∗ 100)

99 = (9 ∗ 101) + (9 ∗ 100)

CSci 127 (Hunter) Lecture 3 11 February 2020 37 / 46

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

101 + 100

Max Number = 99

90 = (9 ∗ 101) + (0 ∗ 100)

99 = (9 ∗ 101) + (9 ∗ 100)

CSci 127 (Hunter) Lecture 3 11 February 2020 37 / 46

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

101 + 100

Max Number = 99

90 = (9 ∗ 101) + (0 ∗ 100)

99 = (9 ∗ 101) + (9 ∗ 100)

CSci 127 (Hunter) Lecture 3 11 February 2020 37 / 46

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

101 + 100

Max Number = 99

90 = (9 ∗ 101) + (0 ∗ 100)

99 = (9 ∗ 101) + (9 ∗ 100)

CSci 127 (Hunter) Lecture 3 11 February 2020 37 / 46

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

101 + 100

Max Number = 99

90 = (9 ∗ 101) + (0 ∗ 100)

99 = (9 ∗ 101) + (9 ∗ 100)

CSci 127 (Hunter) Lecture 3 11 February 2020 37 / 46

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

101 + 100

Max Number = 99

90 = (9 ∗ 101) + (0 ∗ 100)

99 = (9 ∗ 101) + (9 ∗ 100)

CSci 127 (Hunter) Lecture 3 11 February 2020 37 / 46

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

101 + 100

Max Number = 99

90 = (9 ∗ 101) + (0 ∗ 100)

99 = (9 ∗ 101) + (9 ∗ 100)

CSci 127 (Hunter) Lecture 3 11 February 2020 37 / 46

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

101 + 100

Max Number = 99

90 = (9 ∗ 101) + (0 ∗ 100)

99 = (9 ∗ 101) + (9 ∗ 100)

CSci 127 (Hunter) Lecture 3 11 February 2020 37 / 46

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

101 + 100

Max Number = 99

90 = (9 ∗ 101) + (0 ∗ 100)

99 = (9 ∗ 101) + (9 ∗ 100)

CSci 127 (Hunter) Lecture 3 11 February 2020 37 / 46

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

101 + 100

Max Number = 99

90 = (9 ∗ 101) + (0 ∗ 100)

99 = (9 ∗ 101) + (9 ∗ 100)

CSci 127 (Hunter) Lecture 3 11 February 2020 37 / 46

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

101 + 100

Max Number = 99

90 = (9 ∗ 101) + (0 ∗ 100)

99 = (9 ∗ 101) + (9 ∗ 100)

CSci 127 (Hunter) Lecture 3 11 February 2020 37 / 46

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

101 + 100

Max Number = 99

90 = (9 ∗ 101) + (0 ∗ 100)

99 = (9 ∗ 101) + (9 ∗ 100)

CSci 127 (Hunter) Lecture 3 11 February 2020 37 / 46

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

101 + 100

Max Number = 99

90 = (9 ∗ 101) + (0 ∗ 100)

99 = (9 ∗ 101) + (9 ∗ 100)

CSci 127 (Hunter) Lecture 3 11 February 2020 37 / 46

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

101 + 100

Max Number = 99

90 = (9 ∗ 101) + (0 ∗ 100)

99 = (9 ∗ 101) + (9 ∗ 100)
CSci 127 (Hunter) Lecture 3 11 February 2020 37 / 46

Decimal & Hexadecimal Numbers

Counting with 16 digits:

(from i-programmer.info)

CSci 127 (Hunter) Lecture 3 11 February 2020 38 / 46

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

161 + 160

Max Number = 255
F0 = (F ∗ 161) + (0 ∗ 160)

F0 = (240) + (0) = 240

FF = (F ∗ 161) + (F ∗ 160)

FF = (240) + (15) = 255

CSci 127 (Hunter) Lecture 3 11 February 2020 39 / 46

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

161 + 160

Max Number = 255
F0 = (F ∗ 161) + (0 ∗ 160)

F0 = (240) + (0) = 240

FF = (F ∗ 161) + (F ∗ 160)

FF = (240) + (15) = 255

CSci 127 (Hunter) Lecture 3 11 February 2020 39 / 46

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

161 + 160

Max Number = 255
F0 = (F ∗ 161) + (0 ∗ 160)

F0 = (240) + (0) = 240

FF = (F ∗ 161) + (F ∗ 160)

FF = (240) + (15) = 255

CSci 127 (Hunter) Lecture 3 11 February 2020 39 / 46

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

161 + 160

Max Number = 255
F0 = (F ∗ 161) + (0 ∗ 160)

F0 = (240) + (0) = 240

FF = (F ∗ 161) + (F ∗ 160)

FF = (240) + (15) = 255

CSci 127 (Hunter) Lecture 3 11 February 2020 39 / 46

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

161 + 160

Max Number = 255
F0 = (F ∗ 161) + (0 ∗ 160)

F0 = (240) + (0) = 240

FF = (F ∗ 161) + (F ∗ 160)

FF = (240) + (15) = 255

CSci 127 (Hunter) Lecture 3 11 February 2020 39 / 46

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

161 + 160

Max Number = 255
F0 = (F ∗ 161) + (0 ∗ 160)

F0 = (240) + (0) = 240

FF = (F ∗ 161) + (F ∗ 160)

FF = (240) + (15) = 255

CSci 127 (Hunter) Lecture 3 11 February 2020 39 / 46

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

161 + 160

Max Number = 255
F0 = (F ∗ 161) + (0 ∗ 160)

F0 = (240) + (0) = 240

FF = (F ∗ 161) + (F ∗ 160)

FF = (240) + (15) = 255

CSci 127 (Hunter) Lecture 3 11 February 2020 39 / 46

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

161 + 160

Max Number = 255
F0 = (F ∗ 161) + (0 ∗ 160)

F0 = (240) + (0) = 240

FF = (F ∗ 161) + (F ∗ 160)

FF = (240) + (15) = 255

CSci 127 (Hunter) Lecture 3 11 February 2020 39 / 46

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

161 + 160

Max Number = 255
F0 = (F ∗ 161) + (0 ∗ 160)

F0 = (240) + (0) = 240

FF = (F ∗ 161) + (F ∗ 160)

FF = (240) + (15) = 255

CSci 127 (Hunter) Lecture 3 11 February 2020 39 / 46

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

161 + 160

Max Number = 255
F0 = (F ∗ 161) + (0 ∗ 160)

F0 = (240) + (0) = 240

FF = (F ∗ 161) + (F ∗ 160)

FF = (240) + (15) = 255

CSci 127 (Hunter) Lecture 3 11 February 2020 39 / 46

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

161 + 160

Max Number = 255
F0 = (F ∗ 161) + (0 ∗ 160)

F0 = (240) + (0) = 240

FF = (F ∗ 161) + (F ∗ 160)

FF = (240) + (15) = 255

CSci 127 (Hunter) Lecture 3 11 February 2020 39 / 46

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

161 + 160

Max Number = 255
F0 = (F ∗ 161) + (0 ∗ 160)

F0 = (240) + (0) = 240

FF = (F ∗ 161) + (F ∗ 160)

FF = (240) + (15) = 255

CSci 127 (Hunter) Lecture 3 11 February 2020 39 / 46

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

161 + 160

Max Number = 255
F0 = (F ∗ 161) + (0 ∗ 160)

F0 = (240) + (0) = 240

FF = (F ∗ 161) + (F ∗ 160)

FF = (240) + (15) = 255

CSci 127 (Hunter) Lecture 3 11 February 2020 39 / 46

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

161 + 160

Max Number = 255
F0 = (F ∗ 161) + (0 ∗ 160)

F0 = (240) + (0) = 240

FF = (F ∗ 161) + (F ∗ 160)

FF = (240) + (15) = 255

CSci 127 (Hunter) Lecture 3 11 February 2020 39 / 46

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

161 + 160

Max Number = 255
F0 = (F ∗ 161) + (0 ∗ 160)

F0 = (240) + (0) = 240

FF = (F ∗ 161) + (F ∗ 160)

FF = (240) + (15) = 255

CSci 127 (Hunter) Lecture 3 11 February 2020 39 / 46

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

161 + 160

Max Number = 255
F0 = (F ∗ 161) + (0 ∗ 160)

F0 = (240) + (0) = 240

FF = (F ∗ 161) + (F ∗ 160)

FF = (240) + (15) = 255

CSci 127 (Hunter) Lecture 3 11 February 2020 39 / 46

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

161 + 160

Max Number = 255
F0 = (F ∗ 161) + (0 ∗ 160)

F0 = (240) + (0) = 240

FF = (F ∗ 161) + (F ∗ 160)

FF = (240) + (15) = 255

CSci 127 (Hunter) Lecture 3 11 February 2020 39 / 46

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

161 + 160

Max Number = 255

F0 = (F ∗ 161) + (0 ∗ 160)

F0 = (240) + (0) = 240

FF = (F ∗ 161) + (F ∗ 160)

FF = (240) + (15) = 255

CSci 127 (Hunter) Lecture 3 11 February 2020 39 / 46

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

161 + 160

Max Number = 255
F0 = (F ∗ 161) + (0 ∗ 160)

F0 = (240) + (0) = 240

FF = (F ∗ 161) + (F ∗ 160)

FF = (240) + (15) = 255

CSci 127 (Hunter) Lecture 3 11 February 2020 39 / 46

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

161 + 160

Max Number = 255
F0 = (F ∗ 161) + (0 ∗ 160)

F0 = (240) + (0) = 240

FF = (F ∗ 161) + (F ∗ 160)

FF = (240) + (15) = 255

CSci 127 (Hunter) Lecture 3 11 February 2020 39 / 46

Colors

Can specify by numbers (RGB):
I Fractions of each:

e.g. (1.0, 0, 0) is 100% red, no green, and no blue.
I 8-bit colors: numbers from 0 to 255:

e.g. (0, 255, 0) is no red, 100% green, and no blue.
I Hexcodes (base-16 numbers):

e.g. #0000FF is no red, no green, and 100% blue.

CSci 127 (Hunter) Lecture 3 11 February 2020 40 / 46

Colors

Can specify by numbers (RGB):
I Fractions of each:

e.g. (1.0, 0, 0) is 100% red, no green, and no blue.
I 8-bit colors: numbers from 0 to 255:

e.g. (0, 255, 0) is no red, 100% green, and no blue.
I Hexcodes (base-16 numbers):

e.g. #0000FF is no red, no green, and 100% blue.

CSci 127 (Hunter) Lecture 3 11 February 2020 40 / 46

In Pairs or Triples...
Some review and some novel challenges:

CSci 127 (Hunter) Lecture 3 11 February 2020 41 / 46

Trinkets

(Demo with trinkets)

CSci 127 (Hunter) Lecture 3 11 February 2020 42 / 46

Lecture Slip

CSci 127 (Hunter) Lecture 3 11 February 2020 43 / 46

Recap

On lecture slip, write down a topic you
wish we had spent more time (and why).

In Python, we introduced:

I Indexing and Slicing Lists
I Colors
I Hexadecimal Notation

Pass your lecture slips to the end of the
rows for the UTA’s to collect.

CSci 127 (Hunter) Lecture 3 11 February 2020 44 / 46

Recap

On lecture slip, write down a topic you
wish we had spent more time (and why).

In Python, we introduced:

I Indexing and Slicing Lists
I Colors
I Hexadecimal Notation

Pass your lecture slips to the end of the
rows for the UTA’s to collect.

CSci 127 (Hunter) Lecture 3 11 February 2020 44 / 46

Recap

On lecture slip, write down a topic you
wish we had spent more time (and why).

In Python, we introduced:

I Indexing and Slicing Lists

I Colors
I Hexadecimal Notation

Pass your lecture slips to the end of the
rows for the UTA’s to collect.

CSci 127 (Hunter) Lecture 3 11 February 2020 44 / 46

Recap

On lecture slip, write down a topic you
wish we had spent more time (and why).

In Python, we introduced:

I Indexing and Slicing Lists
I Colors

I Hexadecimal Notation

Pass your lecture slips to the end of the
rows for the UTA’s to collect.

CSci 127 (Hunter) Lecture 3 11 February 2020 44 / 46

Recap

On lecture slip, write down a topic you
wish we had spent more time (and why).

In Python, we introduced:

I Indexing and Slicing Lists
I Colors
I Hexadecimal Notation

Pass your lecture slips to the end of the
rows for the UTA’s to collect.

CSci 127 (Hunter) Lecture 3 11 February 2020 44 / 46

Recap

On lecture slip, write down a topic you
wish we had spent more time (and why).

In Python, we introduced:

I Indexing and Slicing Lists
I Colors
I Hexadecimal Notation

Pass your lecture slips to the end of the
rows for the UTA’s to collect.

CSci 127 (Hunter) Lecture 3 11 February 2020 44 / 46

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

We’re starting with Fall 2017, Version 2.

CSci 127 (Hunter) Lecture 3 11 February 2020 45 / 46

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

We’re starting with Fall 2017, Version 2.

CSci 127 (Hunter) Lecture 3 11 February 2020 45 / 46

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:

I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

We’re starting with Fall 2017, Version 2.

CSci 127 (Hunter) Lecture 3 11 February 2020 45 / 46

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;

I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

We’re starting with Fall 2017, Version 2.

CSci 127 (Hunter) Lecture 3 11 February 2020 45 / 46

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and

I repeat.

Past exams are on the webpage (under Final Exam Information).

We’re starting with Fall 2017, Version 2.

CSci 127 (Hunter) Lecture 3 11 February 2020 45 / 46

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

We’re starting with Fall 2017, Version 2.

CSci 127 (Hunter) Lecture 3 11 February 2020 45 / 46

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

We’re starting with Fall 2017, Version 2.

CSci 127 (Hunter) Lecture 3 11 February 2020 45 / 46

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

We’re starting with Fall 2017, Version 2.

CSci 127 (Hunter) Lecture 3 11 February 2020 45 / 46

Writing Boards

Return writing boards as you leave...

CSci 127 (Hunter) Lecture 3 11 February 2020 46 / 46

