
CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

CSci 127 (Hunter) Lecture 12 5 May 2020 1 / 48

Announcements

Please always read all Blackboard
announcements

Online help is available in multiple forms when
school is in session:

I Email: csci127help@gmail.com
I Discussion Board: on Blackboard, link

on purple menu bar
I Drop-in tutoring (12pm-5pm):

sign in here:
https://bit.ly/csci127Tutoring
then join the session here:
https://bit.ly/csci127TutoringSession

CSci 127 (Hunter) Lecture 12 5 May 2020 2 / 48

 https://bit.ly/csci127Tutoring
https://bit.ly/csci127TutoringSession

Announcements

Please always read all Blackboard
announcements

Online help is available in multiple forms when
school is in session:

I Email: csci127help@gmail.com
I Discussion Board: on Blackboard, link

on purple menu bar
I Drop-in tutoring (12pm-5pm):

sign in here:
https://bit.ly/csci127Tutoring
then join the session here:
https://bit.ly/csci127TutoringSession

CSci 127 (Hunter) Lecture 12 5 May 2020 2 / 48

 https://bit.ly/csci127Tutoring
https://bit.ly/csci127TutoringSession

Announcements

Please always read all Blackboard
announcements

Online help is available in multiple forms when
school is in session:

I Email: csci127help@gmail.com

I Discussion Board: on Blackboard, link
on purple menu bar

I Drop-in tutoring (12pm-5pm):
sign in here:
https://bit.ly/csci127Tutoring
then join the session here:
https://bit.ly/csci127TutoringSession

CSci 127 (Hunter) Lecture 12 5 May 2020 2 / 48

 https://bit.ly/csci127Tutoring
https://bit.ly/csci127TutoringSession

Announcements

Please always read all Blackboard
announcements

Online help is available in multiple forms when
school is in session:

I Email: csci127help@gmail.com
I Discussion Board: on Blackboard, link

on purple menu bar

I Drop-in tutoring (12pm-5pm):
sign in here:
https://bit.ly/csci127Tutoring
then join the session here:
https://bit.ly/csci127TutoringSession

CSci 127 (Hunter) Lecture 12 5 May 2020 2 / 48

 https://bit.ly/csci127Tutoring
https://bit.ly/csci127TutoringSession

Announcements

Please always read all Blackboard
announcements

Online help is available in multiple forms when
school is in session:

I Email: csci127help@gmail.com
I Discussion Board: on Blackboard, link

on purple menu bar
I Drop-in tutoring (12pm-5pm):

sign in here:
https://bit.ly/csci127Tutoring
then join the session here:
https://bit.ly/csci127TutoringSession

CSci 127 (Hunter) Lecture 12 5 May 2020 2 / 48

 https://bit.ly/csci127Tutoring
https://bit.ly/csci127TutoringSession

Announcements

Please always read all Blackboard
announcements

Online help is available in multiple forms when
school is in session:

I Email: csci127help@gmail.com
I Discussion Board: on Blackboard, link

on purple menu bar
I Drop-in tutoring (12pm-5pm):

sign in here:
https://bit.ly/csci127Tutoring
then join the session here:
https://bit.ly/csci127TutoringSession

CSci 127 (Hunter) Lecture 12 5 May 2020 2 / 48

 https://bit.ly/csci127Tutoring
https://bit.ly/csci127TutoringSession

Today’s Topics

Recap: Incrementer Design Challenge

C++: Basic Format & Variables

I/O and Definite Loops in C++

More Info on the Final Exam

CSci 127 (Hunter) Lecture 12 5 May 2020 3 / 48

Today’s Topics

Recap: Incrementer Design Challenge

C++: Basic Format & Variables

I/O and Definite Loops in C++

More Info on the Final Exam

CSci 127 (Hunter) Lecture 12 5 May 2020 4 / 48

Recap: Design Challenge: Incrementers

Simplest arithmetic: add one (“increment”) a variable.

Example: Increment a decimal number:

def addOne(n):

m = n+1

return(m)

Challenge: Write an algorithm for incrementing numbers expressed as words.
Example: "forty one" → "forty two"

Hint: Convert to numbers, increment, and convert back to strings.

Challenge: Write an algorithm for incrementing binary numbers.

Example: "1001" → "1010"

CSci 127 (Hunter) Lecture 12 5 May 2020 5 / 48

Recap: Design Challenge: Incrementers

Simplest arithmetic: add one (“increment”) a variable.

Example: Increment a decimal number:

def addOne(n):

m = n+1

return(m)

Challenge: Write an algorithm for incrementing numbers expressed as words.
Example: "forty one" → "forty two"

Hint: Convert to numbers, increment, and convert back to strings.

Challenge: Write an algorithm for incrementing binary numbers.

Example: "1001" → "1010"

CSci 127 (Hunter) Lecture 12 5 May 2020 5 / 48

Recap: Design Challenge: Incrementers

Simplest arithmetic: add one (“increment”) a variable.

Example: Increment a decimal number:

def addOne(n):

m = n+1

return(m)

Challenge: Write an algorithm for incrementing numbers expressed as words.
Example: "forty one" → "forty two"

Hint: Convert to numbers, increment, and convert back to strings.

Challenge: Write an algorithm for incrementing binary numbers.

Example: "1001" → "1010"

CSci 127 (Hunter) Lecture 12 5 May 2020 5 / 48

Recap: Design Challenge: Incrementers

Simplest arithmetic: add one (“increment”) a variable.

Example: Increment a decimal number:

def addOne(n):

m = n+1

return(m)

Challenge: Write an algorithm for incrementing numbers expressed as words.

Example: "forty one" → "forty two"

Hint: Convert to numbers, increment, and convert back to strings.

Challenge: Write an algorithm for incrementing binary numbers.

Example: "1001" → "1010"

CSci 127 (Hunter) Lecture 12 5 May 2020 5 / 48

Recap: Design Challenge: Incrementers

Simplest arithmetic: add one (“increment”) a variable.

Example: Increment a decimal number:

def addOne(n):

m = n+1

return(m)

Challenge: Write an algorithm for incrementing numbers expressed as words.
Example: "forty one" → "forty two"

Hint: Convert to numbers, increment, and convert back to strings.

Challenge: Write an algorithm for incrementing binary numbers.

Example: "1001" → "1010"

CSci 127 (Hunter) Lecture 12 5 May 2020 5 / 48

Recap: Design Challenge: Incrementers

Simplest arithmetic: add one (“increment”) a variable.

Example: Increment a decimal number:

def addOne(n):

m = n+1

return(m)

Challenge: Write an algorithm for incrementing numbers expressed as words.
Example: "forty one" → "forty two"

Hint: Convert to numbers, increment, and convert back to strings.

Challenge: Write an algorithm for incrementing binary numbers.

Example: "1001" → "1010"

CSci 127 (Hunter) Lecture 12 5 May 2020 5 / 48

Recap: Design Challenge: Incrementers

Simplest arithmetic: add one (“increment”) a variable.

Example: Increment a decimal number:

def addOne(n):

m = n+1

return(m)

Challenge: Write an algorithm for incrementing numbers expressed as words.
Example: "forty one" → "forty two"

Hint: Convert to numbers, increment, and convert back to strings.

Challenge: Write an algorithm for incrementing binary numbers.

Example: "1001" → "1010"

CSci 127 (Hunter) Lecture 12 5 May 2020 5 / 48

Recap: Design Challenge: Incrementers

Simplest arithmetic: add one (“increment”) a variable.

Example: Increment a decimal number:

def addOne(n):

m = n+1

return(m)

Challenge: Write an algorithm for incrementing numbers expressed as words.
Example: "forty one" → "forty two"

Hint: Convert to numbers, increment, and convert back to strings.

Challenge: Write an algorithm for incrementing binary numbers.

Example: "1001" → "1010"

CSci 127 (Hunter) Lecture 12 5 May 2020 5 / 48

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Hint: Convert to numbers, increment, and convert back to strings.

Pseudocode same for both questions:

1 Get user input.

2 Convert to standard decimal number.

3 Add one (increment) the standard decimal number.

4 Convert back to your format.

5 Print the result.

CSci 127 (Hunter) Lecture 12 5 May 2020 6 / 48

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Hint: Convert to numbers, increment, and convert back to strings.

Pseudocode same for both questions:

1 Get user input.

2 Convert to standard decimal number.

3 Add one (increment) the standard decimal number.

4 Convert back to your format.

5 Print the result.

CSci 127 (Hunter) Lecture 12 5 May 2020 6 / 48

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Hint: Convert to numbers, increment, and convert back to strings.

Pseudocode same for both questions:

1 Get user input.

2 Convert to standard decimal number.

3 Add one (increment) the standard decimal number.

4 Convert back to your format.

5 Print the result.

CSci 127 (Hunter) Lecture 12 5 May 2020 6 / 48

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Hint: Convert to numbers, increment, and convert back to strings.

Pseudocode same for both questions:

1 Get user input.

2 Convert to standard decimal number.

3 Add one (increment) the standard decimal number.

4 Convert back to your format.

5 Print the result.

CSci 127 (Hunter) Lecture 12 5 May 2020 6 / 48

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Hint: Convert to numbers, increment, and convert back to strings.

Pseudocode same for both questions:

1 Get user input.

2 Convert to standard decimal number.

3 Add one (increment) the standard decimal number.

4 Convert back to your format.

5 Print the result.

CSci 127 (Hunter) Lecture 12 5 May 2020 6 / 48

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Hint: Convert to numbers, increment, and convert back to strings.

Pseudocode same for both questions:

1 Get user input.

2 Convert to standard decimal number.

3 Add one (increment) the standard decimal number.

4 Convert back to your format.

5 Print the result.

CSci 127 (Hunter) Lecture 12 5 May 2020 6 / 48

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Hint: Convert to numbers, increment, and convert back to strings.

Pseudocode same for both questions:

1 Get user input.

2 Convert to standard decimal number.

3 Add one (increment) the standard decimal number.

4 Convert back to your format.

5 Print the result.

CSci 127 (Hunter) Lecture 12 5 May 2020 6 / 48

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Pseudocode same for both questions:

1 Get user input: "forty one"

2 Convert to standard decimal number: 41

3 Add one (increment) the standard decimal number: 42

4 Convert back to your format: "forty two"

5 Print the result.

CSci 127 (Hunter) Lecture 12 5 May 2020 7 / 48

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Pseudocode same for both questions:

1 Get user input: "forty one"

2 Convert to standard decimal number: 41

3 Add one (increment) the standard decimal number: 42

4 Convert back to your format: "forty two"

5 Print the result.

CSci 127 (Hunter) Lecture 12 5 May 2020 7 / 48

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Pseudocode same for both questions:

1 Get user input: "forty one"

2 Convert to standard decimal number: 41

3 Add one (increment) the standard decimal number: 42

4 Convert back to your format: "forty two"

5 Print the result.

CSci 127 (Hunter) Lecture 12 5 May 2020 7 / 48

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Pseudocode same for both questions:

1 Get user input: "forty one"

2 Convert to standard decimal number: 41

3 Add one (increment) the standard decimal number: 42

4 Convert back to your format: "forty two"

5 Print the result.

CSci 127 (Hunter) Lecture 12 5 May 2020 7 / 48

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Pseudocode same for both questions:

1 Get user input: "forty one"

2 Convert to standard decimal number: 41

3 Add one (increment) the standard decimal number: 42

4 Convert back to your format: "forty two"

5 Print the result.

CSci 127 (Hunter) Lecture 12 5 May 2020 7 / 48

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Pseudocode same for both questions:

1 Get user input: "1001"

2 Convert to standard decimal number: 9

3 Add one (increment) the standard decimal number: 10

4 Convert back to your format: "1010"

5 Print the result.

CSci 127 (Hunter) Lecture 12 5 May 2020 8 / 48

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Pseudocode same for both questions:

1 Get user input: "1001"

2 Convert to standard decimal number: 9

3 Add one (increment) the standard decimal number: 10

4 Convert back to your format: "1010"

5 Print the result.

CSci 127 (Hunter) Lecture 12 5 May 2020 8 / 48

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Pseudocode same for both questions:

1 Get user input: "1001"

2 Convert to standard decimal number: 9

3 Add one (increment) the standard decimal number: 10

4 Convert back to your format: "1010"

5 Print the result.

CSci 127 (Hunter) Lecture 12 5 May 2020 8 / 48

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Pseudocode same for both questions:

1 Get user input: "1001"

2 Convert to standard decimal number: 9

3 Add one (increment) the standard decimal number: 10

4 Convert back to your format: "1010"

5 Print the result.

CSci 127 (Hunter) Lecture 12 5 May 2020 8 / 48

Recap: Incrementer Design Challenge

Challenge: Write an algorithm for incrementing numbers expressed as
words. Example: "forty one" → "forty two"

Challenge: Write an algorithm for incrementing binary numbers.
Example: "1001" → "1010"

Pseudocode same for both questions:

1 Get user input: "1001"

2 Convert to standard decimal number: 9

3 Add one (increment) the standard decimal number: 10

4 Convert back to your format: "1010"

5 Print the result.

CSci 127 (Hunter) Lecture 12 5 May 2020 8 / 48

Recap: Incrementer Design Challenge

Focus on: Convert to standard decimal number:

def convert2Decimal(numString):

#Start with one-digit numbers: zero,one,...,nine

if numString == "zero":

return(0)

elif numString == "one":

return(1)

elif numString == "two":

return(1)

else:

return(9)

Will this work?

CSci 127 (Hunter) Lecture 12 5 May 2020 9 / 48

Recap: Incrementer Design Challenge

Focus on: Convert to standard decimal number:
def convert2Decimal(numString):

#Start with one-digit numbers: zero,one,...,nine

if numString == "zero":

return(0)

elif numString == "one":

return(1)

elif numString == "two":

return(1)

else:

return(9)

Will this work?

CSci 127 (Hunter) Lecture 12 5 May 2020 9 / 48

Recap: Incrementer Design Challenge

Focus on: Convert to standard decimal number:
def convert2Decimal(numString):

#Start with one-digit numbers: zero,one,...,nine

if numString == "zero":

return(0)

elif numString == "one":

return(1)

elif numString == "two":

return(1)

else:

return(9)

Will this work?

CSci 127 (Hunter) Lecture 12 5 May 2020 9 / 48

Recap: Incrementer Design Challenge

Focus on: Convert to standard decimal number:
def convert2Decimal(numString):

#Start with one-digit numbers: zero,one,...,nine

if numString == "zero":

return(0)

elif numString == "one":

return(1)

elif numString == "two":

return(1)

else:

return(9)

Will this work?

CSci 127 (Hunter) Lecture 12 5 May 2020 9 / 48

Recap: Incrementer Design Challenge

Focus on: Convert to standard decimal number:
def convert2Decimal(numString):

#Start with one-digit numbers: zero,one,...,nine

if numString == "zero":

return(0)

elif numString == "one":

return(1)

elif numString == "two":

return(1)

else:

return(9)

Will this work?

CSci 127 (Hunter) Lecture 12 5 May 2020 9 / 48

Recap: Incrementer Design Challenge

Focus on: Convert to standard decimal number:
def convert2Decimal(numString):

#Start with one-digit numbers: zero,one,...,nine

if numString == "zero":

return(0)

elif numString == "one":

return(1)

elif numString == "two":

return(1)

else:

return(9)

Will this work?

CSci 127 (Hunter) Lecture 12 5 May 2020 9 / 48

Recap: Incrementer Design Challenge

Focus on: Convert to standard decimal number:
def convert2Decimal(numString):

#Start with one-digit numbers: zero,one,...,nine

if numString == "zero":

return(0)

elif numString == "one":

return(1)

elif numString == "two":

return(1)

else:

return(9)

Will this work?

CSci 127 (Hunter) Lecture 12 5 May 2020 9 / 48

Recap: Incrementer Design Challenge

Focus on: Convert to standard decimal number:
def convert2Decimal(numString):

#Start with one-digit numbers: zero,one,...,nine

if numString == "zero":

return(0)

elif numString == "one":

return(1)

elif numString == "two":

return(1)

else:

return(9)

Will this work?

CSci 127 (Hunter) Lecture 12 5 May 2020 9 / 48

Recap: Incrementer Design Challenge

Focus on: Convert to standard decimal number:
def convert2Decimal(numString):

#Start with one-digit numbers: zero,one,...,nine

if numString == "zero":

return(0)

elif numString == "one":

return(1)

elif numString == "two":

return(1)

else:

return(9)

Will this work?

CSci 127 (Hunter) Lecture 12 5 May 2020 9 / 48

Unit Testing: Incrementer Design Challenge

Focus on: Convert to standard decimal number:
def convert2Decimal(numString):

#Start with one-digit numbers: zero,one,...,nine

if numString == "zero":

return(0)

elif numString == "one":

return(1)

elif numString == "two":

return(1)

else:

return(9)

Will this work? What inputs would find the error(s)?

Unit Testing: testing individual units/functions/blocks of code to verify
correctness. Often automated (e.g. gradescope).

CSci 127 (Hunter) Lecture 12 5 May 2020 10 / 48

Unit Testing: Incrementer Design Challenge

Focus on: Convert to standard decimal number:
def convert2Decimal(numString):

#Start with one-digit numbers: zero,one,...,nine

if numString == "zero":

return(0)

elif numString == "one":

return(1)

elif numString == "two":

return(1)

else:

return(9)

Will this work? What inputs would find the error(s)?

Unit Testing: testing individual units/functions/blocks of code to verify
correctness.

Often automated (e.g. gradescope).

CSci 127 (Hunter) Lecture 12 5 May 2020 10 / 48

Unit Testing: Incrementer Design Challenge

Focus on: Convert to standard decimal number:
def convert2Decimal(numString):

#Start with one-digit numbers: zero,one,...,nine

if numString == "zero":

return(0)

elif numString == "one":

return(1)

elif numString == "two":

return(1)

else:

return(9)

Will this work? What inputs would find the error(s)?

Unit Testing: testing individual units/functions/blocks of code to verify
correctness. Often automated (e.g. gradescope).

CSci 127 (Hunter) Lecture 12 5 May 2020 10 / 48

Unit Testing: Incrementer Design Challenge

Unit Testing: testing individual units/functions/blocks of code to verify
correctness. Often automated (e.g. gradescope).

To test all branches of code, would need to test all inputs: "zero",
"one",..., "nine", & some bad inputs.

Often do, if important or small.

If large, design automated tests that will “cover” as many branches as
possible and use randomly generated inputs:

names = ["zero","one",...,"nine"]

x = random.randrange(10)

if x == convert2Decimal(names[x]):

#PASS

else:

#FAIL

CSci 127 (Hunter) Lecture 12 5 May 2020 11 / 48

Unit Testing: Incrementer Design Challenge

Unit Testing: testing individual units/functions/blocks of code to verify
correctness. Often automated (e.g. gradescope).

To test all branches of code, would need to test all inputs: "zero",
"one",..., "nine", & some bad inputs. Often do, if important or small.

If large, design automated tests that will “cover” as many branches as
possible and use randomly generated inputs:

names = ["zero","one",...,"nine"]

x = random.randrange(10)

if x == convert2Decimal(names[x]):

#PASS

else:

#FAIL

CSci 127 (Hunter) Lecture 12 5 May 2020 11 / 48

Unit Testing: Incrementer Design Challenge

Unit Testing: testing individual units/functions/blocks of code to verify
correctness. Often automated (e.g. gradescope).

To test all branches of code, would need to test all inputs: "zero",
"one",..., "nine", & some bad inputs. Often do, if important or small.

If large, design automated tests that will “cover” as many branches as
possible and use randomly generated inputs:

names = ["zero","one",...,"nine"]

x = random.randrange(10)

if x == convert2Decimal(names[x]):

#PASS

else:

#FAIL

CSci 127 (Hunter) Lecture 12 5 May 2020 11 / 48

Unit Testing: Incrementer Design Challenge

Unit Testing: testing individual units/functions/blocks of code to verify
correctness. Often automated (e.g. gradescope).

To test all branches of code, would need to test all inputs: "zero",
"one",..., "nine", & some bad inputs. Often do, if important or small.

If large, design automated tests that will “cover” as many branches as
possible and use randomly generated inputs:

names = ["zero","one",...,"nine"]

x = random.randrange(10)

if x == convert2Decimal(names[x]):

#PASS

else:

#FAIL

CSci 127 (Hunter) Lecture 12 5 May 2020 11 / 48

Unit Testing: Incrementer Design Challenge

Unit Testing: testing individual units/functions/blocks of code to verify
correctness. Often automated (e.g. gradescope).

To test all branches of code, would need to test all inputs: "zero",
"one",..., "nine", & some bad inputs. Often do, if important or small.

If large, design automated tests that will “cover” as many branches as
possible and use randomly generated inputs:

names = ["zero","one",...,"nine"]

x = random.randrange(10)

if x == convert2Decimal(names[x]):

#PASS

else:

#FAIL

CSci 127 (Hunter) Lecture 12 5 May 2020 11 / 48

Unit Testing: Incrementer Design Challenge

Unit Testing: testing individual units/functions/blocks of code to verify
correctness. Often automated (e.g. gradescope).

To test all branches of code, would need to test all inputs: "zero",
"one",..., "nine", & some bad inputs. Often do, if important or small.

If large, design automated tests that will “cover” as many branches as
possible and use randomly generated inputs:

names = ["zero","one",...,"nine"]

x = random.randrange(10)

if x == convert2Decimal(names[x]):

#PASS

else:

#FAIL

CSci 127 (Hunter) Lecture 12 5 May 2020 11 / 48

Unit Testing: Incrementer Design Challenge

Unit Testing: testing individual units/functions/blocks of code to verify
correctness. Often automated (e.g. gradescope).

To test all branches of code, would need to test all inputs: "zero",
"one",..., "nine", & some bad inputs. Often do, if important or small.

If large, design automated tests that will “cover” as many branches as
possible and use randomly generated inputs:

names = ["zero","one",...,"nine"]

x = random.randrange(10)

if x == convert2Decimal(names[x]):

#PASS

else:

#FAIL

CSci 127 (Hunter) Lecture 12 5 May 2020 11 / 48

Unit Testing: Incrementer Design Challenge

Unit Testing: testing individual units/functions/blocks of code to verify
correctness. Often automated (e.g. gradescope).

To test all branches of code, would need to test all inputs: "zero",
"one",..., "nine", & some bad inputs. Often do, if important or small.

If large, design automated tests that will “cover” as many branches as
possible and use randomly generated inputs:

names = ["zero","one",...,"nine"]

x = random.randrange(10)

if x == convert2Decimal(names[x]):

#PASS

else:

#FAIL

CSci 127 (Hunter) Lecture 12 5 May 2020 11 / 48

Today’s Topics

Recap: Incrementer Design Challenge

C++: Basic Format & Variables

I/O and Definite Loops in C++

More Info on the Final Exam

CSci 127 (Hunter) Lecture 12 5 May 2020 12 / 48

Challenge:

Using what you know from Python, predict what the C++ code will do:

CSci 127 (Hunter) Lecture 12 5 May 2020 13 / 48

onlinegdb demo

(Demo with onlinegdb)

CSci 127 (Hunter) Lecture 12 5 May 2020 14 / 48

Introduction to C++

C++ is a popular programming
language that extends C.

Fast, efficient, and powerful.

Used for systems programming
(and future courses!).

Today, we’ll introduce the basic
structure and simple input/output
(I/O) in C/C++.

CSci 127 (Hunter) Lecture 12 5 May 2020 15 / 48

Introduction to C++

C++ is a popular programming
language that extends C.

Fast, efficient, and powerful.

Used for systems programming
(and future courses!).

Today, we’ll introduce the basic
structure and simple input/output
(I/O) in C/C++.

CSci 127 (Hunter) Lecture 12 5 May 2020 15 / 48

Introduction to C++

C++ is a popular programming
language that extends C.

Fast, efficient, and powerful.

Used for systems programming
(and future courses!).

Today, we’ll introduce the basic
structure and simple input/output
(I/O) in C/C++.

CSci 127 (Hunter) Lecture 12 5 May 2020 15 / 48

Introduction to C++

C++ is a popular programming
language that extends C.

Fast, efficient, and powerful.

Used for systems programming
(and future courses!).

Today, we’ll introduce the basic
structure and simple input/output
(I/O) in C/C++.

CSci 127 (Hunter) Lecture 12 5 May 2020 15 / 48

Introduction to C++

Programs are organized in functions.

Example:

int main()

{
cout << "Hello world!";

return(0);

}

CSci 127 (Hunter) Lecture 12 5 May 2020 16 / 48

Introduction to C++

Programs are organized in functions.

Example:

int main()

{
cout << "Hello world!";

return(0);

}

CSci 127 (Hunter) Lecture 12 5 May 2020 16 / 48

Introduction to C++

Programs are organized in functions.

Example:

int main()

{
cout << "Hello world!";

return(0);

}

CSci 127 (Hunter) Lecture 12 5 May 2020 16 / 48

Introduction to C++

Programs are organized in functions.

Example:

int main()

{

cout << "Hello world!";

return(0);

}

CSci 127 (Hunter) Lecture 12 5 May 2020 16 / 48

Introduction to C++

Programs are organized in functions.

Example:

int main()

{
cout << "Hello world!";

return(0);

}

CSci 127 (Hunter) Lecture 12 5 May 2020 16 / 48

Introduction to C++

Programs are organized in functions.

Variables must be declared:
int num;

Many types available:
int, float, char, ...

Semicolons separate commands:
num = 5; more = 2*num;

To print, we’ll use cout <<:
cout << "Hello!!";

To get input, we’ll use cin >>:
cin >> num;

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12 5 May 2020 17 / 48

Introduction to C++

Programs are organized in functions.

Variables must be declared:

int num;

Many types available:
int, float, char, ...

Semicolons separate commands:
num = 5; more = 2*num;

To print, we’ll use cout <<:
cout << "Hello!!";

To get input, we’ll use cin >>:
cin >> num;

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12 5 May 2020 17 / 48

Introduction to C++

Programs are organized in functions.

Variables must be declared:
int num;

Many types available:
int, float, char, ...

Semicolons separate commands:
num = 5; more = 2*num;

To print, we’ll use cout <<:
cout << "Hello!!";

To get input, we’ll use cin >>:
cin >> num;

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12 5 May 2020 17 / 48

Introduction to C++

Programs are organized in functions.

Variables must be declared:
int num;

Many types available:
int, float, char, ...

Semicolons separate commands:
num = 5; more = 2*num;

To print, we’ll use cout <<:
cout << "Hello!!";

To get input, we’ll use cin >>:
cin >> num;

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12 5 May 2020 17 / 48

Introduction to C++

Programs are organized in functions.

Variables must be declared:
int num;

Many types available:
int, float, char, ...

Semicolons separate commands:

num = 5; more = 2*num;

To print, we’ll use cout <<:
cout << "Hello!!";

To get input, we’ll use cin >>:
cin >> num;

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12 5 May 2020 17 / 48

Introduction to C++

Programs are organized in functions.

Variables must be declared:
int num;

Many types available:
int, float, char, ...

Semicolons separate commands:
num = 5; more = 2*num;

To print, we’ll use cout <<:
cout << "Hello!!";

To get input, we’ll use cin >>:
cin >> num;

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12 5 May 2020 17 / 48

Introduction to C++

Programs are organized in functions.

Variables must be declared:
int num;

Many types available:
int, float, char, ...

Semicolons separate commands:
num = 5; more = 2*num;

To print, we’ll use cout <<:

cout << "Hello!!";

To get input, we’ll use cin >>:
cin >> num;

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12 5 May 2020 17 / 48

Introduction to C++

Programs are organized in functions.

Variables must be declared:
int num;

Many types available:
int, float, char, ...

Semicolons separate commands:
num = 5; more = 2*num;

To print, we’ll use cout <<:
cout << "Hello!!";

To get input, we’ll use cin >>:
cin >> num;

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12 5 May 2020 17 / 48

Introduction to C++

Programs are organized in functions.

Variables must be declared:
int num;

Many types available:
int, float, char, ...

Semicolons separate commands:
num = 5; more = 2*num;

To print, we’ll use cout <<:
cout << "Hello!!";

To get input, we’ll use cin >>:

cin >> num;

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12 5 May 2020 17 / 48

Introduction to C++

Programs are organized in functions.

Variables must be declared:
int num;

Many types available:
int, float, char, ...

Semicolons separate commands:
num = 5; more = 2*num;

To print, we’ll use cout <<:
cout << "Hello!!";

To get input, we’ll use cin >>:
cin >> num;

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12 5 May 2020 17 / 48

Introduction to C++

Programs are organized in functions.

Variables must be declared:
int num;

Many types available:
int, float, char, ...

Semicolons separate commands:
num = 5; more = 2*num;

To print, we’ll use cout <<:
cout << "Hello!!";

To get input, we’ll use cin >>:
cin >> num;

To use those I/O functions, we put at
the top of the program:

#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12 5 May 2020 17 / 48

Introduction to C++

Programs are organized in functions.

Variables must be declared:
int num;

Many types available:
int, float, char, ...

Semicolons separate commands:
num = 5; more = 2*num;

To print, we’ll use cout <<:
cout << "Hello!!";

To get input, we’ll use cin >>:
cin >> num;

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12 5 May 2020 17 / 48

Challenge:

Predict what the following pieces of code will do:

CSci 127 (Hunter) Lecture 12 5 May 2020 18 / 48

Side Note: gdb

gdb.org

Part of Richard Stallman’s “GNU is Not
Unix” (GNU) project.

Written in 1986, gdb is the GNU debugger
and based on dbx from the Berkeley
Distribution of Unix.

Lightweight, widely-available program that
allows you to “step through” your code
line-by-line.

Available on the lab machines (via
command-line and the IDE spyder) and
on-line (onlinegdb.com).

CSci 127 (Hunter) Lecture 12 5 May 2020 19 / 48

Side Note: gdb

gdb.org

Part of Richard Stallman’s “GNU is Not
Unix” (GNU) project.

Written in 1986, gdb is the GNU debugger
and based on dbx from the Berkeley
Distribution of Unix.

Lightweight, widely-available program that
allows you to “step through” your code
line-by-line.

Available on the lab machines (via
command-line and the IDE spyder) and
on-line (onlinegdb.com).

CSci 127 (Hunter) Lecture 12 5 May 2020 19 / 48

Side Note: gdb

gdb.org

Part of Richard Stallman’s “GNU is Not
Unix” (GNU) project.

Written in 1986, gdb is the GNU debugger
and based on dbx from the Berkeley
Distribution of Unix.

Lightweight, widely-available program that
allows you to “step through” your code
line-by-line.

Available on the lab machines (via
command-line and the IDE spyder) and
on-line (onlinegdb.com).

CSci 127 (Hunter) Lecture 12 5 May 2020 19 / 48

Side Note: gdb

gdb.org

Part of Richard Stallman’s “GNU is Not
Unix” (GNU) project.

Written in 1986, gdb is the GNU debugger
and based on dbx from the Berkeley
Distribution of Unix.

Lightweight, widely-available program that
allows you to “step through” your code
line-by-line.

Available on the lab machines (via
command-line and the IDE spyder) and
on-line (onlinegdb.com).

CSci 127 (Hunter) Lecture 12 5 May 2020 19 / 48

C++ Demo

(Demo with onlinegdb)

CSci 127 (Hunter) Lecture 12 5 May 2020 20 / 48

Challenge:...

Convert the C++ code to a Python program:

CSci 127 (Hunter) Lecture 12 5 May 2020 21 / 48

Python Tutor

Convert the C++ code to a Python program:

(Write from scratch in pythonTutor.)

CSci 127 (Hunter) Lecture 12 5 May 2020 22 / 48

Today’s Topics

Recap: Incrementer Design Challenge

C++: Basic Format & Variables

I/O and Definite Loops in C++

More Info on the Final Exam

CSci 127 (Hunter) Lecture 12 5 May 2020 23 / 48

Challenge:
Predict what the following pieces of code will do:

CSci 127 (Hunter) Lecture 12 5 May 2020 24 / 48

C++ Demo

(Demo with onlinegdb)

CSci 127 (Hunter) Lecture 12 5 May 2020 25 / 48

Definite loops

General format:

for (initialization ; test ; updateAction)
{

command1;
command2;
command3;
...

}

CSci 127 (Hunter) Lecture 12 5 May 2020 26 / 48

Challenge:
Predict what the following pieces of code will do:

CSci 127 (Hunter) Lecture 12 5 May 2020 27 / 48

C++ Demo

(Demo with onlinegdb)

CSci 127 (Hunter) Lecture 12 5 May 2020 28 / 48

Challenge:

Predict what the following pieces of code will do:

CSci 127 (Hunter) Lecture 12 5 May 2020 29 / 48

Challenge:

Translate the C++ program into Python:

CSci 127 (Hunter) Lecture 12 5 May 2020 30 / 48

Recap: C++

C++ is a popular programming language that
extends C.

Input/Output (I/O):

I cin >>
I cout <<

Definite loops:
for (i = 0; i < 10; i++) {

...

}

CSci 127 (Hunter) Lecture 12 5 May 2020 31 / 48

Recap: C++

C++ is a popular programming language that
extends C.

Input/Output (I/O):

I cin >>
I cout <<

Definite loops:
for (i = 0; i < 10; i++) {

...

}

CSci 127 (Hunter) Lecture 12 5 May 2020 31 / 48

Recap: C++

C++ is a popular programming language that
extends C.

Input/Output (I/O):

I cin >>
I cout <<

Definite loops:
for (i = 0; i < 10; i++) {

...

}

CSci 127 (Hunter) Lecture 12 5 May 2020 31 / 48

Today’s Topics

Recap: Incrementer Design Challenge

C++: Basic Format & Variables

I/O and Definite Loops in C++

More Info on the Final Exam

CSci 127 (Hunter) Lecture 12 5 May 2020 32 / 48

Final Exam: When

The final exam is Monday, 18 May, 9am-10:30am,
administered via Gradescope.

If you have a conflict, the alternative time is:
Friday, 15 May, 8-9:30am, administered via Gradescope.

You will be added to a different Gradescope course called CSci 127
Final Exam for your version

If you have accommodations via the Accessibility Office,
please email Prof. Ligorio (tligorio@hunter.cuny.edu) by May 11.

IMPORTANT let us know your desired exam time and
accommodations by answering this survey by Monday May 11
(Link also provided below video lecture. If you do not answer this
survey we will assume you will take the exam on Monday May 18
at 9am with no accommodations.)

CSci 127 (Hunter) Lecture 12 5 May 2020 33 / 48

http://bit.ly/csci127finalExamPlans

Final Exam: When

The final exam is Monday, 18 May, 9am-10:30am,
administered via Gradescope.

If you have a conflict, the alternative time is:
Friday, 15 May, 8-9:30am, administered via Gradescope.

You will be added to a different Gradescope course called CSci 127
Final Exam for your version

If you have accommodations via the Accessibility Office,
please email Prof. Ligorio (tligorio@hunter.cuny.edu) by May 11.

IMPORTANT let us know your desired exam time and
accommodations by answering this survey by Monday May 11
(Link also provided below video lecture. If you do not answer this
survey we will assume you will take the exam on Monday May 18
at 9am with no accommodations.)

CSci 127 (Hunter) Lecture 12 5 May 2020 33 / 48

http://bit.ly/csci127finalExamPlans

Final Exam: When

The final exam is Monday, 18 May, 9am-10:30am,
administered via Gradescope.

If you have a conflict, the alternative time is:
Friday, 15 May, 8-9:30am, administered via Gradescope.

You will be added to a different Gradescope course called CSci 127
Final Exam for your version

If you have accommodations via the Accessibility Office,
please email Prof. Ligorio (tligorio@hunter.cuny.edu) by May 11.

IMPORTANT let us know your desired exam time and
accommodations by answering this survey by Monday May 11
(Link also provided below video lecture. If you do not answer this
survey we will assume you will take the exam on Monday May 18
at 9am with no accommodations.)

CSci 127 (Hunter) Lecture 12 5 May 2020 33 / 48

http://bit.ly/csci127finalExamPlans

Final Exam: When

The final exam is Monday, 18 May, 9am-10:30am,
administered via Gradescope.

If you have a conflict, the alternative time is:
Friday, 15 May, 8-9:30am, administered via Gradescope.

You will be added to a different Gradescope course called CSci 127
Final Exam for your version

If you have accommodations via the Accessibility Office,
please email Prof. Ligorio (tligorio@hunter.cuny.edu) by May 11.

IMPORTANT let us know your desired exam time and
accommodations by answering this survey by Monday May 11
(Link also provided below video lecture. If you do not answer this
survey we will assume you will take the exam on Monday May 18
at 9am with no accommodations.)

CSci 127 (Hunter) Lecture 12 5 May 2020 33 / 48

http://bit.ly/csci127finalExamPlans

Final Exam: When

The final exam is Monday, 18 May, 9am-10:30am,
administered via Gradescope.

If you have a conflict, the alternative time is:
Friday, 15 May, 8-9:30am, administered via Gradescope.

You will be added to a different Gradescope course called CSci 127
Final Exam for your version

If you have accommodations via the Accessibility Office,
please email Prof. Ligorio (tligorio@hunter.cuny.edu) by May 11.

IMPORTANT let us know your desired exam time and
accommodations by answering this survey by Monday May 11
(Link also provided below video lecture. If you do not answer this
survey we will assume you will take the exam on Monday May 18
at 9am with no accommodations.)

CSci 127 (Hunter) Lecture 12 5 May 2020 33 / 48

http://bit.ly/csci127finalExamPlans

Final Exam: CR/NC

Please read instructions for the CR/NC option here:
(Click on the link if you are reading the pdf or find the clickable link
under the video lecture)

Students will have up to June 25, twenty business days after the
University’s final grade submission deadline (May 28), to elect CR/NC

The CR/NC Taskforce is currently in the process of developing a
timeline for the communication and implementation that will be rolled
out throughout the next 5 weeks.

Students will use CUNYfirst to elect the credit/no credit option.
Detailed instructions and communications will be provided across
multiple channels as part of the communication and implementation
plan.

CSci 127 (Hunter) Lecture 12 5 May 2020 34 / 48

https://www.cuny.edu/coronavirus/credit-no-credit-policy/faq/

Final Exam: CR/NC

Please read instructions for the CR/NC option here:
(Click on the link if you are reading the pdf or find the clickable link
under the video lecture)

Students will have up to June 25, twenty business days after the
University’s final grade submission deadline (May 28), to elect CR/NC

The CR/NC Taskforce is currently in the process of developing a
timeline for the communication and implementation that will be rolled
out throughout the next 5 weeks.

Students will use CUNYfirst to elect the credit/no credit option.
Detailed instructions and communications will be provided across
multiple channels as part of the communication and implementation
plan.

CSci 127 (Hunter) Lecture 12 5 May 2020 34 / 48

https://www.cuny.edu/coronavirus/credit-no-credit-policy/faq/

Final Exam: CR/NC

Please read instructions for the CR/NC option here:
(Click on the link if you are reading the pdf or find the clickable link
under the video lecture)

Students will have up to June 25, twenty business days after the
University’s final grade submission deadline (May 28), to elect CR/NC

The CR/NC Taskforce is currently in the process of developing a
timeline for the communication and implementation that will be rolled
out throughout the next 5 weeks.

Students will use CUNYfirst to elect the credit/no credit option.
Detailed instructions and communications will be provided across
multiple channels as part of the communication and implementation
plan.

CSci 127 (Hunter) Lecture 12 5 May 2020 34 / 48

https://www.cuny.edu/coronavirus/credit-no-credit-policy/faq/

Final Exam: CR/NC

Please read instructions for the CR/NC option here:
(Click on the link if you are reading the pdf or find the clickable link
under the video lecture)

Students will have up to June 25, twenty business days after the
University’s final grade submission deadline (May 28), to elect CR/NC

The CR/NC Taskforce is currently in the process of developing a
timeline for the communication and implementation that will be rolled
out throughout the next 5 weeks.

Students will use CUNYfirst to elect the credit/no credit option.
Detailed instructions and communications will be provided across
multiple channels as part of the communication and implementation
plan.

CSci 127 (Hunter) Lecture 12 5 May 2020 34 / 48

https://www.cuny.edu/coronavirus/credit-no-credit-policy/faq/

Final Overview: Format

Although the exam is remote, we still suggest you prepare 1 piece of
8.5” x 11” paper.

I With notes, examples, programs: what will help you on the exam.
I Best if you design/write yours since excellent way to study.

The exam format:
I 10 questions, each worth 10 points.
I Questions correspond to the course topics, and are variations on the

programming assignments, lab exercises, and lecture design challenges.
I Style of questions: what does the code do? short answer, write

functions, top down design, & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 12 5 May 2020 35 / 48

Final Overview: Format

Although the exam is remote, we still suggest you prepare 1 piece of
8.5” x 11” paper.

I With notes, examples, programs: what will help you on the exam.

I Best if you design/write yours since excellent way to study.

The exam format:
I 10 questions, each worth 10 points.
I Questions correspond to the course topics, and are variations on the

programming assignments, lab exercises, and lecture design challenges.
I Style of questions: what does the code do? short answer, write

functions, top down design, & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 12 5 May 2020 35 / 48

Final Overview: Format

Although the exam is remote, we still suggest you prepare 1 piece of
8.5” x 11” paper.

I With notes, examples, programs: what will help you on the exam.
I Best if you design/write yours since excellent way to study.

The exam format:
I 10 questions, each worth 10 points.
I Questions correspond to the course topics, and are variations on the

programming assignments, lab exercises, and lecture design challenges.
I Style of questions: what does the code do? short answer, write

functions, top down design, & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 12 5 May 2020 35 / 48

Final Overview: Format

Although the exam is remote, we still suggest you prepare 1 piece of
8.5” x 11” paper.

I With notes, examples, programs: what will help you on the exam.
I Best if you design/write yours since excellent way to study.

The exam format:

I 10 questions, each worth 10 points.
I Questions correspond to the course topics, and are variations on the

programming assignments, lab exercises, and lecture design challenges.
I Style of questions: what does the code do? short answer, write

functions, top down design, & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 12 5 May 2020 35 / 48

Final Overview: Format

Although the exam is remote, we still suggest you prepare 1 piece of
8.5” x 11” paper.

I With notes, examples, programs: what will help you on the exam.
I Best if you design/write yours since excellent way to study.

The exam format:
I 10 questions, each worth 10 points.

I Questions correspond to the course topics, and are variations on the
programming assignments, lab exercises, and lecture design challenges.

I Style of questions: what does the code do? short answer, write
functions, top down design, & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 12 5 May 2020 35 / 48

Final Overview: Format

Although the exam is remote, we still suggest you prepare 1 piece of
8.5” x 11” paper.

I With notes, examples, programs: what will help you on the exam.
I Best if you design/write yours since excellent way to study.

The exam format:
I 10 questions, each worth 10 points.
I Questions correspond to the course topics, and are variations on the

programming assignments, lab exercises, and lecture design challenges.

I Style of questions: what does the code do? short answer, write
functions, top down design, & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 12 5 May 2020 35 / 48

Final Overview: Format

Although the exam is remote, we still suggest you prepare 1 piece of
8.5” x 11” paper.

I With notes, examples, programs: what will help you on the exam.
I Best if you design/write yours since excellent way to study.

The exam format:
I 10 questions, each worth 10 points.
I Questions correspond to the course topics, and are variations on the

programming assignments, lab exercises, and lecture design challenges.
I Style of questions: what does the code do? short answer, write

functions, top down design, & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 12 5 May 2020 35 / 48

Final Overview: Format

Although the exam is remote, we still suggest you prepare 1 piece of
8.5” x 11” paper.

I With notes, examples, programs: what will help you on the exam.
I Best if you design/write yours since excellent way to study.

The exam format:
I 10 questions, each worth 10 points.
I Questions correspond to the course topics, and are variations on the

programming assignments, lab exercises, and lecture design challenges.
I Style of questions: what does the code do? short answer, write

functions, top down design, & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 12 5 May 2020 35 / 48

How to Prepare

Emphasis of this course is on analytic
reasoning and problem solving.

The best way to prepare to do problems
(reading & watching videos can clarify but not
replace problem solving).

Repeat, while there are past exams:

I Choose a past exam (see webpage).
I With only a note sheet, work through in

1 hour (half the time).
I Grade yourself (answers on webpage).
I Ask about those that don’t make sense.
I Rewrite answers & organize by

type/question number.
I Adjust/rewrite note sheet to include

what you wished you had.

Aim to complete 7 to 10 past exams
(one a day in the week leading up to the final).

CSci 127 (Hunter) Lecture 12 5 May 2020 36 / 48

How to Prepare

Emphasis of this course is on analytic
reasoning and problem solving.

The best way to prepare to do problems
(reading & watching videos can clarify but not
replace problem solving).

Repeat, while there are past exams:

I Choose a past exam (see webpage).
I With only a note sheet, work through in

1 hour (half the time).
I Grade yourself (answers on webpage).
I Ask about those that don’t make sense.
I Rewrite answers & organize by

type/question number.
I Adjust/rewrite note sheet to include

what you wished you had.

Aim to complete 7 to 10 past exams
(one a day in the week leading up to the final).

CSci 127 (Hunter) Lecture 12 5 May 2020 36 / 48

How to Prepare

Emphasis of this course is on analytic
reasoning and problem solving.

The best way to prepare to do problems
(reading & watching videos can clarify but not
replace problem solving).

Repeat, while there are past exams:

I Choose a past exam (see webpage).
I With only a note sheet, work through in

1 hour (half the time).
I Grade yourself (answers on webpage).
I Ask about those that don’t make sense.
I Rewrite answers & organize by

type/question number.
I Adjust/rewrite note sheet to include

what you wished you had.

Aim to complete 7 to 10 past exams
(one a day in the week leading up to the final).

CSci 127 (Hunter) Lecture 12 5 May 2020 36 / 48

How to Prepare

Emphasis of this course is on analytic
reasoning and problem solving.

The best way to prepare to do problems
(reading & watching videos can clarify but not
replace problem solving).

Repeat, while there are past exams:

I Choose a past exam (see webpage).

I With only a note sheet, work through in
1 hour (half the time).

I Grade yourself (answers on webpage).
I Ask about those that don’t make sense.
I Rewrite answers & organize by

type/question number.
I Adjust/rewrite note sheet to include

what you wished you had.

Aim to complete 7 to 10 past exams
(one a day in the week leading up to the final).

CSci 127 (Hunter) Lecture 12 5 May 2020 36 / 48

How to Prepare

Emphasis of this course is on analytic
reasoning and problem solving.

The best way to prepare to do problems
(reading & watching videos can clarify but not
replace problem solving).

Repeat, while there are past exams:

I Choose a past exam (see webpage).
I With only a note sheet, work through in

1 hour (half the time).

I Grade yourself (answers on webpage).
I Ask about those that don’t make sense.
I Rewrite answers & organize by

type/question number.
I Adjust/rewrite note sheet to include

what you wished you had.

Aim to complete 7 to 10 past exams
(one a day in the week leading up to the final).

CSci 127 (Hunter) Lecture 12 5 May 2020 36 / 48

How to Prepare

Emphasis of this course is on analytic
reasoning and problem solving.

The best way to prepare to do problems
(reading & watching videos can clarify but not
replace problem solving).

Repeat, while there are past exams:

I Choose a past exam (see webpage).
I With only a note sheet, work through in

1 hour (half the time).
I Grade yourself (answers on webpage).

I Ask about those that don’t make sense.
I Rewrite answers & organize by

type/question number.
I Adjust/rewrite note sheet to include

what you wished you had.

Aim to complete 7 to 10 past exams
(one a day in the week leading up to the final).

CSci 127 (Hunter) Lecture 12 5 May 2020 36 / 48

How to Prepare

Emphasis of this course is on analytic
reasoning and problem solving.

The best way to prepare to do problems
(reading & watching videos can clarify but not
replace problem solving).

Repeat, while there are past exams:

I Choose a past exam (see webpage).
I With only a note sheet, work through in

1 hour (half the time).
I Grade yourself (answers on webpage).
I Ask about those that don’t make sense.

I Rewrite answers & organize by
type/question number.

I Adjust/rewrite note sheet to include
what you wished you had.

Aim to complete 7 to 10 past exams
(one a day in the week leading up to the final).

CSci 127 (Hunter) Lecture 12 5 May 2020 36 / 48

How to Prepare

Emphasis of this course is on analytic
reasoning and problem solving.

The best way to prepare to do problems
(reading & watching videos can clarify but not
replace problem solving).

Repeat, while there are past exams:

I Choose a past exam (see webpage).
I With only a note sheet, work through in

1 hour (half the time).
I Grade yourself (answers on webpage).
I Ask about those that don’t make sense.
I Rewrite answers & organize by

type/question number.

I Adjust/rewrite note sheet to include
what you wished you had.

Aim to complete 7 to 10 past exams
(one a day in the week leading up to the final).

CSci 127 (Hunter) Lecture 12 5 May 2020 36 / 48

How to Prepare

Emphasis of this course is on analytic
reasoning and problem solving.

The best way to prepare to do problems
(reading & watching videos can clarify but not
replace problem solving).

Repeat, while there are past exams:

I Choose a past exam (see webpage).
I With only a note sheet, work through in

1 hour (half the time).
I Grade yourself (answers on webpage).
I Ask about those that don’t make sense.
I Rewrite answers & organize by

type/question number.
I Adjust/rewrite note sheet to include

what you wished you had.

Aim to complete 7 to 10 past exams
(one a day in the week leading up to the final).

CSci 127 (Hunter) Lecture 12 5 May 2020 36 / 48

How to Prepare

Emphasis of this course is on analytic
reasoning and problem solving.

The best way to prepare to do problems
(reading & watching videos can clarify but not
replace problem solving).

Repeat, while there are past exams:

I Choose a past exam (see webpage).
I With only a note sheet, work through in

1 hour (half the time).
I Grade yourself (answers on webpage).
I Ask about those that don’t make sense.
I Rewrite answers & organize by

type/question number.
I Adjust/rewrite note sheet to include

what you wished you had.

Aim to complete 7 to 10 past exams
(one a day in the week leading up to the final).

CSci 127 (Hunter) Lecture 12 5 May 2020 36 / 48

Final Overview: Rules

You will get credit for you answers only if:

Your answer uses language constructs that were covered in the course.

Even if your answer is correct, it will get 0 points if the method was
not covered in this course.

Your answer is not obviously copy/pasted from a website.

Your answer is not oddly identically to that of another student.

All acts of academic dishonesty will be reported to the Office of
Academic and Student Affairs

CSci 127 (Hunter) Lecture 12 5 May 2020 37 / 48

Final Overview: Rules

You will get credit for you answers only if:

Your answer uses language constructs that were covered in the course.

Even if your answer is correct, it will get 0 points if the method was
not covered in this course.

Your answer is not obviously copy/pasted from a website.

Your answer is not oddly identically to that of another student.

All acts of academic dishonesty will be reported to the Office of
Academic and Student Affairs

CSci 127 (Hunter) Lecture 12 5 May 2020 37 / 48

Final Overview: Rules

You will get credit for you answers only if:

Your answer uses language constructs that were covered in the course.

Even if your answer is correct, it will get 0 points if the method was
not covered in this course.

Your answer is not obviously copy/pasted from a website.

Your answer is not oddly identically to that of another student.

All acts of academic dishonesty will be reported to the Office of
Academic and Student Affairs

CSci 127 (Hunter) Lecture 12 5 May 2020 37 / 48

Final Overview: Rules

You will get credit for you answers only if:

Your answer uses language constructs that were covered in the course.

Even if your answer is correct, it will get 0 points if the method was
not covered in this course.

Your answer is not obviously copy/pasted from a website.

Your answer is not oddly identically to that of another student.

All acts of academic dishonesty will be reported to the Office of
Academic and Student Affairs

CSci 127 (Hunter) Lecture 12 5 May 2020 37 / 48

Final Overview: Rules

You will get credit for you answers only if:

Your answer uses language constructs that were covered in the course.

Even if your answer is correct, it will get 0 points if the method was
not covered in this course.

Your answer is not obviously copy/pasted from a website.

Your answer is not oddly identically to that of another student.

All acts of academic dishonesty will be reported to the Office of
Academic and Student Affairs

CSci 127 (Hunter) Lecture 12 5 May 2020 37 / 48

Final Overview: Rules

You will get credit for you answers only if:

Your answer uses language constructs that were covered in the course.

Even if your answer is correct, it will get 0 points if the method was
not covered in this course.

Your answer is not obviously copy/pasted from a website.

Your answer is not oddly identically to that of another student.

All acts of academic dishonesty will be reported to the Office of
Academic and Student Affairs

CSci 127 (Hunter) Lecture 12 5 May 2020 37 / 48

Final Exam Practice Rounds:
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a weight in kilograms and returns
the weight in pounds.

def kg2lbs(kg):

...

return(lbs)

CSci 127 (Hunter) Lecture 12 5 May 2020 38 / 48

Final Exam Practice Rounds:
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a weight in kilograms and returns
the weight in pounds.

def kg2lbs(kg):

...

return(lbs)

CSci 127 (Hunter) Lecture 12 5 May 2020 38 / 48

Final Exam Practice Rounds:
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a weight in kilograms and returns
the weight in pounds.

def kg2lbs(kg)

lbs = kg * 2.2

return(lbs)

CSci 127 (Hunter) Lecture 12 5 May 2020 39 / 48

Final Exam Practice Rounds:
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a string and returns its length.

def sLength(str):

...

return(length)

CSci 127 (Hunter) Lecture 12 5 May 2020 40 / 48

Final Exam Practice Rounds:
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a string and returns its length.

def sLength(str):

...

return(length)

CSci 127 (Hunter) Lecture 12 5 May 2020 40 / 48

Final Exam Practice Rounds:
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a string and returns its length.

def sLength(str):

length = len(str)

return(length)

CSci 127 (Hunter) Lecture 12 5 May 2020 41 / 48

Final Exam Practice Rounds:
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that, given a DataFrame, returns the minimal
value in the “Manhattan” column.

def getMin(df):

...

return(min)

CSci 127 (Hunter) Lecture 12 5 May 2020 42 / 48

Final Exam Practice Rounds:
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that, given a DataFrame, returns the minimal
value in the “Manhattan” column.

def getMin(df):

...

return(min)

CSci 127 (Hunter) Lecture 12 5 May 2020 42 / 48

Final Exam Practice Rounds:
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that, given a DataFrame, returns the minimal
value in the “Manhattan” column.

def getMin(df):

min = df[’Manhattan’].min()

return(min)

CSci 127 (Hunter) Lecture 12 5 May 2020 43 / 48

Final Exam Practice Rounds:
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a whole number and returns the
corresponding binary number as a string.

def num2bin(num):

...

return(bin)

CSci 127 (Hunter) Lecture 12 5 May 2020 44 / 48

Final Exam Practice Rounds:
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a whole number and returns the
corresponding binary number as a string.

def num2bin(num):

...

return(bin)

CSci 127 (Hunter) Lecture 12 5 May 2020 44 / 48

Final Exam Practice Rounds:
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a whole number and returns the
corresponding binary number as a string.

def num2bin(num):

binStr = ""

while (num > 0):

#Divide by 2, and add the remainder to the string

r = num %2

binString = str(r) + binStr

num = num / 2

return(binStr)

CSci 127 (Hunter) Lecture 12 5 May 2020 45 / 48

Final Exam Practice Rounds:
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that computes the total monthly payment
when given the initial loan amount, annual interest rate,
number of years of the loan.

def computePayment(loan,rate,year):

....

return(payment)

CSci 127 (Hunter) Lecture 12 5 May 2020 46 / 48

Final Exam Practice Rounds:
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that computes the total monthly payment
when given the initial loan amount, annual interest rate,
number of years of the loan.

def computePayment(loan,rate,year):

....

return(payment)

CSci 127 (Hunter) Lecture 12 5 May 2020 46 / 48

Final Exam Practice Rounds:
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that computes the total monthly payment
when given the initial loan amount, annual interest rate,
number of years of the loan.

def computePayment(loan,rate,year):

(Some formula for payment)

return(payment)

CSci 127 (Hunter) Lecture 12 5 May 2020 47 / 48

Educational Psychology Study

If you have consented to participate in the
Educational Psychology study,
please fill in the 3-question survey

Clickable link also below the video.

Thank you for your participation!!!

CSci 127 (Hunter) Lecture 12 5 May 2020 48 / 48

https://cunyhunter.co1.qualtrics.com/jfe/form/SV_cT6nNZuI63DB5Tn

