
CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 1 / 44

Frequently Asked Questions

From email

Do I have to take the final?
Yes, you must to pass the final (60 out of 100 points) to the pass the class.
Please review the grading policy on the course syllabus:
https://huntercsci127.github.io/f22/syl.html

Can I take the course Pass/No Credit?
Yes, but check with your advisor that it is possible with your major and standing.
Learn more about it here: https://hunter.cuny.edu/students/registration/register-
for-classes/credit-no-credit/

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 2 / 44

https://huntercsci127.github.io/f22/syl.html
https://hunter.cuny.edu/students/registration/register-for-classes/credit-no-credit/
https://hunter.cuny.edu/students/registration/register-for-classes/credit-no-credit/

Frequently Asked Questions

From email

Do I have to take the final?
Yes, you must to pass the final (60 out of 100 points) to the pass the class.
Please review the grading policy on the course syllabus:
https://huntercsci127.github.io/f22/syl.html

Can I take the course Pass/No Credit?
Yes, but check with your advisor that it is possible with your major and standing.
Learn more about it here: https://hunter.cuny.edu/students/registration/register-
for-classes/credit-no-credit/

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 2 / 44

https://huntercsci127.github.io/f22/syl.html
https://hunter.cuny.edu/students/registration/register-for-classes/credit-no-credit/
https://hunter.cuny.edu/students/registration/register-for-classes/credit-no-credit/

Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Design Challenge

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 3 / 44

Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Design Challenge

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 4 / 44

Recap: Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 5 / 44

Recap: Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 5 / 44

Recap: Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 5 / 44

Recap: Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 5 / 44

Recap: Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 5 / 44

Recap: Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parenthesis, both
in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters.

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 6 / 44

Challenge:

What are the formal parameters? What is returned?

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 7 / 44

dessert.py

� �
1 def enigma1(x,y,z):

2 if x == len(y):
3 return(z)
4 elif x < len(y):
5 return(y[0:x])
6 else:
7 s = cont1(z)

8 return(s+y)� �

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 8 / 44

dessert.py: II

� �
9 def cont1(st):

10 r = ""

11 for i in range(len(st)-1,-1,-1):
12 r = r + st[i]

13 return(r)
14

15 enigma1(7,"caramel","dulce de leche")

16 enigma1(3,"cupcake","vanilla")

17 enigma1(10,"pie","nomel")� �
CSci 127 (Hunter) Lecture 8 Nov 1, 2022 9 / 44

Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 10 / 44

Input Parameters

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 11 / 44

Input Parameters

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 11 / 44

Input Parameters

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 11 / 44

Input Parameters

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 11 / 44

Input Parameters

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 11 / 44

Input Parameters: What about Lists?

When called, the actual parameter values
are copied to the formal parameters.

What is copied with a list?

The address of the list, but not the
individual elements.

The actual parameters do not change, but
the inside elements might.

Easier to see with a demo.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 12 / 44

Input Parameters: What about Lists?

When called, the actual parameter values
are copied to the formal parameters.

What is copied with a list?

The address of the list, but not the
individual elements.

The actual parameters do not change, but
the inside elements might.

Easier to see with a demo.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 12 / 44

Input Parameters: What about Lists?

When called, the actual parameter values
are copied to the formal parameters.

What is copied with a list?

The address of the list, but not the
individual elements.

The actual parameters do not change, but
the inside elements might.

Easier to see with a demo.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 12 / 44

Input Parameters: What about Lists?

When called, the actual parameter values
are copied to the formal parameters.

What is copied with a list?

The address of the list, but not the
individual elements.

The actual parameters do not change, but
the inside elements might.

Easier to see with a demo.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 12 / 44

Input Parameters: What about Lists?

When called, the actual parameter values
are copied to the formal parameters.

What is copied with a list?

The address of the list, but not the
individual elements.

The actual parameters do not change, but
the inside elements might.

Easier to see with a demo.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 12 / 44

Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 13 / 44

Challenge:

Predict what the code will do:

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 14 / 44

triangle.py� �
1 import turtle

2 def setUp(t, dist, col):

3 t.penup()

4 t.forward(dist)

5 t.pendown()

6 t.color(col)

7

8 def nestedTriangle(t, side):

9 if side > 10:

10 for i in range(3):
11 t.forward(side)

12 t.left(120)

13 nestedTriangle(t, side/2)� �CSci 127 (Hunter) Lecture 8 Nov 1, 2022 15 / 44

triangle.py: II

� �
14 def fractalTriangle(t, side):

15 if side > 10:

16 for i in range(3):
17 t.forward(side)

18 t.left(120)

19 fractalTriangle(t, side/2)� �

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 16 / 44

triangle.py: III� �
20 def main():

21 side = int(input("Enter side of a

triangle: "))

22 nessa = turtle.Turtle()

23 setUp(nessa, 100, "violet")

24 nestedTriangle(nessa, side)

25

26 frank = turtle.Turtle()

27 setUp(frank, -100, "red")

28 fractalTriangle(frank, side)

29

30 if __name__ == "__main__":

31 main()� �CSci 127 (Hunter) Lecture 8 Nov 1, 2022 17 / 44

IDLE

(Demo with IDLE)

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 18 / 44

Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Design Challenge

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 19 / 44

Design Question

Design an algorithm that finds the collision that is closest to input
location.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 20 / 44

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Print the location with the smallest distance.

Let’s use function names as placeholders for the ones we’re unsure...

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 21 / 44

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Print the location with the smallest distance.

Let’s use function names as placeholders for the ones we’re unsure...

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 21 / 44

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Print the location with the smallest distance.

Let’s use function names as placeholders for the ones we’re unsure...

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 21 / 44

OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", closestLat, "and lon:",

closestLon)

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 22 / 44

OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", closestLat, "and lon:",

closestLon)

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 22 / 44

OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", closestLat, "and lon:",

closestLon)

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 22 / 44

OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", closestLat, "and lon:",

closestLon)

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 22 / 44

OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", closestLat, "and lon:",

closestLon)

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 22 / 44

OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", closestLat, "and lon:",

closestLon)

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 22 / 44

OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", closestLat, "and lon:",

closestLon)

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 22 / 44

OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", closestLat, "and lon:",

closestLon)

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 22 / 44

OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", closestLat, "and lon:",

closestLon)

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 22 / 44

OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", closestLat, "and lon:",

closestLon)

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 22 / 44

Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Design Challenge

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 23 / 44

Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 24 / 44

Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 24 / 44

Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 24 / 44

Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 24 / 44

Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 24 / 44

Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 24 / 44

Challenge:

http://koalastothemax.com

Top-down design puzzle:

I What does koalastomax do?
I What does each circle represent?

Write a high-level design for it.

Translate into code with function calls.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 25 / 44

Demo

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 26 / 44

Demo

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 26 / 44

Demo

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 26 / 44

Demo

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 27 / 44

Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 28 / 44

Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 28 / 44

Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:

I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 28 / 44

Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,

I Divide the region into 4 quarters.
I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 28 / 44

Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.

I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 28 / 44

Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each quarter.

I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 28 / 44

Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 28 / 44

What does the following code do?� �
1 import random

2 import numpy as np

3 import matplotlib.pyplot as plt

4

5 h = 320 #height of image, make it divided by

power of 2

6 w = 640 #width of image

7 img = np.zeros((h, w, 3))

8

9 level = 2

10 #hReg is height of region, needs to be int

11 hReg = h//2**level

12 wReg = w//2**level #wReg is width of region� �CSci 127 (Hunter) Lecture 8 Nov 1, 2022 29 / 44

What does the following code do?

� �
14 for i in range(2**level):
15 for j in range(2**level):
16 img[i*hReg:(i+1)*hReg, j*wReg:(j+1)*

wReg] = [random.uniform(0,1),

random.uniform(0,1), random.

uniform(0,1)]

17 #random.uniform() returns a random

floating point number in [0, 1]� �

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 30 / 44

What does the code do? III

� �
18 plt.imshow(img)

19 plt.show()

20 #suppose level is 2, then there are 2**level

= 4 cuts in horizontal and vertical

direction,

21 #a total of 16 grids

22 plt.imsave("color_grid_" + str(2**level*2**
level) + ".png", img)� �

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 31 / 44

Calculate and set average color for region of an image� �
1 def quarter(img2, levels):

2 """

3 Takes an image and the number of splits

to make.

4 Splits the image into regions (2**

levels x 2**levels pieces)

5 and averages each of these regions

separately.

6 Calls average() and setRegion() to

average and set colors for the

regions.

7 """� �
CSci 127 (Hunter) Lecture 8 Nov 1, 2022 32 / 44

Calculate and set average color for region of an image� �
8 h = img2.shape[0]

9 w = img2.shape[1]

10 hReg = h//2**levels

11 wReg = w//2**levels

12 for i in range(2**levels):
13 for j in range(2**levels):
14 #Average the region:

15 r,g,b = average(img2[i*hReg:(i

+1)*hReg,j*wReg:(j+1)*wReg

])

16 setRegion(img2[i*hReg:(i+1)*

hReg,j*wReg:(j+1)*wReg],r,g

,b)� �CSci 127 (Hunter) Lecture 8 Nov 1, 2022 33 / 44

Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 34 / 44

Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 34 / 44

Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 34 / 44

Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 34 / 44

Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 34 / 44

Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 34 / 44

Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 34 / 44

Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 34 / 44

Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 34 / 44

Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 34 / 44

Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Design Challenge

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 35 / 44

Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Find all current city job postings for internship positions.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 36 / 44

Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:
1 Open the file.
2 Select the rows that have “intern” in the business title.
3 Print out those rows.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 37 / 44

Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:
1 Open the file.
2 Select the rows that have “intern” in the business title.
3 Print out those rows.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 37 / 44

Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:

1 Open the file.
2 Select the rows that have “intern” in the business title.
3 Print out those rows.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 37 / 44

Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:
1 Open the file.

2 Select the rows that have “intern” in the business title.
3 Print out those rows.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 37 / 44

Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:
1 Open the file.
2 Select the rows that have “intern” in the business title.

3 Print out those rows.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 37 / 44

Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:
1 Open the file.
2 Select the rows that have “intern” in the business title.
3 Print out those rows.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 37 / 44

Recap

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 38 / 44

Recap

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 38 / 44

Recap

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 38 / 44

Recap

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 38 / 44

Recap

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 38 / 44

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions! Starting with S18, V1, #4a and #4b.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 39 / 44

Final Exam: Spring 2018, Version 1, #4a

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 40 / 44

Final Exam: Spring 2018, Version 1, #4a

(Demo with trinket)

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 41 / 44

Final Exam: Spring 2018, Version 1, #4b

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 42 / 44

Weekly Reminders!

Before next lecture, don’t forget to:

Work on this week’s Online Lab

Schedule an appointment to take the Quiz in lab 1001G Hunter North

If you haven’t already, schedule an appointment to take the Code
Review (once a week) in lab 1001G Hunter North

Submit this week’s 5 programming assignments (programs 36-40)

If you need help, schedule an appointment for Tutoring in lab 1001G
11:30am-5:30pm

Take the Lecture Preview on Blackboard on Monday (or no later than
10am on Tuesday)

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 43 / 44

Weekly Reminders!

Before next lecture, don’t forget to:

Work on this week’s Online Lab

Schedule an appointment to take the Quiz in lab 1001G Hunter North

If you haven’t already, schedule an appointment to take the Code
Review (once a week) in lab 1001G Hunter North

Submit this week’s 5 programming assignments (programs 36-40)

If you need help, schedule an appointment for Tutoring in lab 1001G
11:30am-5:30pm

Take the Lecture Preview on Blackboard on Monday (or no later than
10am on Tuesday)

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 43 / 44

Weekly Reminders!

Before next lecture, don’t forget to:

Work on this week’s Online Lab

Schedule an appointment to take the Quiz in lab 1001G Hunter North

If you haven’t already, schedule an appointment to take the Code
Review (once a week) in lab 1001G Hunter North

Submit this week’s 5 programming assignments (programs 36-40)

If you need help, schedule an appointment for Tutoring in lab 1001G
11:30am-5:30pm

Take the Lecture Preview on Blackboard on Monday (or no later than
10am on Tuesday)

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 43 / 44

Weekly Reminders!

Before next lecture, don’t forget to:

Work on this week’s Online Lab

Schedule an appointment to take the Quiz in lab 1001G Hunter North

If you haven’t already, schedule an appointment to take the Code
Review (once a week) in lab 1001G Hunter North

Submit this week’s 5 programming assignments (programs 36-40)

If you need help, schedule an appointment for Tutoring in lab 1001G
11:30am-5:30pm

Take the Lecture Preview on Blackboard on Monday (or no later than
10am on Tuesday)

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 43 / 44

Weekly Reminders!

Before next lecture, don’t forget to:

Work on this week’s Online Lab

Schedule an appointment to take the Quiz in lab 1001G Hunter North

If you haven’t already, schedule an appointment to take the Code
Review (once a week) in lab 1001G Hunter North

Submit this week’s 5 programming assignments (programs 36-40)

If you need help, schedule an appointment for Tutoring in lab 1001G
11:30am-5:30pm

Take the Lecture Preview on Blackboard on Monday (or no later than
10am on Tuesday)

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 43 / 44

Weekly Reminders!

Before next lecture, don’t forget to:

Work on this week’s Online Lab

Schedule an appointment to take the Quiz in lab 1001G Hunter North

If you haven’t already, schedule an appointment to take the Code
Review (once a week) in lab 1001G Hunter North

Submit this week’s 5 programming assignments (programs 36-40)

If you need help, schedule an appointment for Tutoring in lab 1001G
11:30am-5:30pm

Take the Lecture Preview on Blackboard on Monday (or no later than
10am on Tuesday)

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 43 / 44

Lecture Slips & Writing Boards

Hand your lecture slip to a UTA.

Return writing boards as you leave.

CSci 127 (Hunter) Lecture 8 Nov 1, 2022 44 / 44

