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Two Dimensional Array Slicing

� �
 import numpy as np



 numRows = 6

 numCols = 6

 a = np. zeros ( ( numRows, numCols ) )

 #create a table with 6 rows and 6 columns,

 #each element is initialized to be zero.

 #Do not forget parentheses around

 #numRows, numCols.� �
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Two Dimensional Array Slicing: II� �
 for i in range(numRows):
 for j in range(numCols):

 a[i, j] = i*10 + j

 #range(numRows) returns [0, 1, 2, 3, 4, 5],

 #where outer loop variable i chooses from.

 #When i is 0 , run

 # for j in range(numCols):

 # a[i, j] = i*10 + j

 #When i is 1 , run

 # for j in range(numCols):

 # a[i, j] = i*10 + j

 #The last round of i is 5.� �
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Two Dimensional Array Slicing: III� �
 for i in range(numRows):
 for j in range(numCols):
 print("%3i"%(a[i, j]), end="")

 #"%3i"%(a[i, j]) prints a[i, j] --

 #element of a at ith row and

 #jth column -- as an 3-digit int.

 #"%3i" is a place holder and is

filled by a[i, j].

 #If a[i, j] does not have 3 digits,

 #pad space(s) to the left.

 #end="" print w/o a new line.



 print() #print a new line after each row� �CSci 127 (Hunter) Lecture 7 25 Oct 2022 4 / 64



Two Dimensional Array Slicing: III� �
 print(a[0, 3:5])� �

row
col

0 1 2 3 4 5

0 0 1 2 3 4 5
1 10 11 12 13 14 15
2 20 21 22 23 24 25
3 30 31 32 33 34 35
4 40 41 42 43 44 45
5 50 51 52 53 54 55

row
col

0 1 2 3 4 5

0 0 1 2 3 4 5
1 10 11 12 13 14 15
2 20 21 22 23 24 25
3 30 31 32 33 34 35
4 40 41 42 43 44 45
5 50 51 52 53 54 55

print

[3. 4.]
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Two Dimensional Array Slicing: IV� �
 print(a[4:, 4:])� �

row
col

0 1 2 3 4 5

0 0 1 2 3 4 5
1 10 11 12 13 14 15
2 20 21 22 23 24 25
3 30 31 32 33 34 35
4 40 41 42 43 44 45
5 50 51 52 53 54 55

row
col

0 1 2 3 4 5

0 0 1 2 3 4 5
1 10 11 12 13 14 15
2 20 21 22 23 24 25
3 30 31 32 33 34 35
4 40 41 42 43 44 45
5 50 51 52 53 54 55

Print out

[[44. 45.]

[54. 55.]]
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Two Dimensional Array Slicing: IV� �
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Two Dimensional Array Slicing: V� �
 print(a[:, 2])� �

row
col

0 1 2 3 4 5

0 0 1 2 3 4 5
1 10 11 12 13 14 15
2 20 21 22 23 24 25
3 30 31 32 33 34 35
4 40 41 42 43 44 45
5 50 51 52 53 54 55

row
col

0 1 2 3 4 5

0 0 1 2 3 4 5
1 10 11 12 13 14 15
2 20 21 22 23 24 25
3 30 31 32 33 34 35
4 40 41 42 43 44 45
5 50 51 52 53 54 55

Print out

[ 2. 12. 22. 32. 42. 52.]
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Two Dimensional Array Slicing: VI� �
 print(a[2::2, ::2])� �

0 1 2 3 4 5

0 0 1 2 3 4 5
1 10 11 12 13 14 15
2 20 21 22 23 24 25
3 30 31 32 33 34 35
4 40 41 42 43 44 45
5 50 51 52 53 54 55

0 1 2 3 4 5

0 0 1 2 3 4 5
1 10 11 12 13 14 15

2 20 21 22 23 24 25
3 30 31 32 33 34 35

4 40 41 42 43 44 45
5 50 51 52 53 54 55

print

[[20. 22. 24.]

[40. 42. 44.]]
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Today’s Topics

Recap: Slicing & Images

Introduction to Functions

NYC Open Data
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Image and Array� �
 import matplotlib.pyplot as plt

 import numpy as np



 height= 20

 width = 30



 #An image is an array with height, width and

 #depth 3 for r(ed) g(reen) b(lue)

 img = np.zeros((height, width, 3))

 img[ :height//2, :width//2, 0 ] = 1

 #which does this statement do? Same as

 #img[:height//2, :width//2] = [1,0,0]� �
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Image and Array: II� �
 img[ height//2:, :width//2, 1 ] = 1

 #which does this statement do? Same as

 #img[height//2:, :width//2] = [0,1,0]



 img[ :height//2:2, width//2:, 2 ] = 1

 #What does this statement do?



 img[ height//2:, width//2::2 ] = [1, 1, 0]

 #What does this statement do?



 plt.imshow(img)

 plt.show()� �
CSci 127 (Hunter) Lecture 7 25 Oct 2022 12 / 64



output for the above program
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Challenge: Cropping Images

Crop an image to select the top quarter (upper left corner)
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Challenge: Cropping Images� �
 import matplotlib.pyplot as plt

 import numpy as np



 img = plt.imread("csBridge.png")

 height = img.shape[0]

 width = img.shape[1]

 img2 = img[ 0:height//2, 0:width//2, : ]

 #img2 is top left of img. Same as

 #img2 = img[:height//2, :width//2].

 plt.imshow(img2)

 plt.show()



 plt.imsave("top_left_csBridge.png", img2)� �CSci 127 (Hunter) Lecture 7 25 Oct 2022 15 / 64



Challenge: Cropping Images
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Challenge: Cropping Images

0 width

height

width/2
0

height/2
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Challenge: Cropping Images

0 width

height

width/2
0

height/2

How would you select the lower left corner?
img2 = img[height//2:, :width//2]

How would you select the upper right corner?
img2 = img[:height//2, width//2:]

How would you select the lower right corner?
img2 = img[height//2:, width//2:]
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Today’s Topics

Recap: Slicing & Images

Introduction to Functions

NYC Open Data
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Modularity
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Modularity
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Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

Naming conventions same as variables

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.
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“Hello, World!” with Functions
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Python Tutor

(Demo with pythonTutor)
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functions - modules - packages
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functions - modules - packages
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functions - modules - packages
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Stand-alone program
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Challenge:
Predict what the code will do:� �
 def totalWithTax(food,tip):

 total = 0

 tax = 0.1

 total = food + food * tax

 total = total + tip

 return(total)


 lunch = float(input(’Enter lunch total: ’))

 lTip = float(input(’Enter lunch tip: ’ ))

 lTotal = totalWithTax(lunch, lTip)

 print(’Lunch total is’, lTotal)� �
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totalWithTax function: continued� �
 def totalWithTax(food,tip):

 total = 0

 tax = 0.1

 total = food + food * tax

 total = total + tip

 return(total)� �
Omit code to calculate lunch total...� �
 dinner= float(input(’Enter dinner total: ’))

 dTip = float(input(’Enter dinner tip: ’ ))

 dTotal = totalWithTax(dinner, dTip)

 print(’Dinner total is’, dTotal)� �
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Scope

You can have multiple
functions.

Each function defines the scope
of its local variables

A variable defined inside a
function is local, i.e. defined
only inside that function.
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Local Data?

CSci 127 (Hunter) Lecture 7 25 Oct 2022 32 / 64



Function Example: burger

Function name: burger (like a variable name, no space is allowed)
Input:

bread: representing for bread layer

meat: representing for meat layer

vegetable: representing for vegetable layer

Return: a hamburger
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Burger function definition

Pseudocode of burger function.� �
 def burger(bread, meat, veg):

 pick a bread, put on top

 put meat

 put vegetable

 put a bread at the bottom



 return the burger made� �
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Call burger function

� �
 def main():

 myBurger = burger("wheat bread", "beef",

"lettuce")

 eat myBurger� �
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Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters
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Challenge:
Circle the actual parameters and underline the formal parameters:
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Challenge:
Circle the actual parameters and underline the formal parameters:
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Challenge:
Predict what the code will do:� �
 def prob4():

 verse = "jam tomorrow and jam yesterday,

"

 print("The rule is,")

 c = mystery(verse)

 w = enigma(verse,c)

 print(c,w)
 def mystery(v):

 print(v)
 c = v.count("jam")

 return(c)
 def enigma(v,c):

 print("but never", v[-1])

 for i in range(c):
 print("jam")
 return("day.")
 prob4()� �
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Challenge:
Predict what the code will do:� �
 def prob4():
 verse = ”jam tomorrow and jam yesterday,”
 print(”The rule is ,”)
 c = mystery(verse)
 w = enigma(verse,c)
 print(c,w)� �
Omit code of function mystery.� �
 def enigma(v,c):

 print("but never", v[-1])

 for i in range(c):
 print("jam")
 return("day.")
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Python Tutor

(Demo with pythonTutor)
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Challenge:
Predict what the code will do:� �
 # From "Teaching with Python" by John Zelle

 def happy():

 print("Happy Birthday to you!")



 def sing(P):

 happy()

 happy()

 print("Happy Birthday dear " + P + "!")

 happy()



 sing("Fred")

 sing("Thomas")

 sing("Hunter")� �CSci 127 (Hunter) Lecture 7 25 Oct 2022 43 / 64



Challenge:

Fill in the missing code:
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IDLE

(Demo with IDLE)
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Github

Octocat

Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.

Also convenient place to host websites
(i.e. huntercsci127.github.io).

In Lab6 you set up github accounts to
copy (‘clone’) documents from the class
repo. (More in future courses.)
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Recap: Functions

Functions are a way to break code into pieces,
that can be easily reused.

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.
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Today’s Topics

Recap: Slicing & Images

Introduction to Functions

NYC Open Data
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Design Challenge - Solution

Libraries: pandas

Process:
I Print max of ’Luminosity’ column
I Print min of ’Temperature’ column
I groupby ’Star Type’ and get group ’Hypergiant’ to print average

’Radius’
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Design Challenge - Code

Libraries: pandas
import pandas as pd

stars = pd.read csv(’Stars.csv’)

Process:
I Print max of ’Luminosity’ column� �

 print(stars[’Luminosity(L/Lo)’].max())� �
I Prints min of ’Temperature’ column and store it in temp variable� �

 print(stars[’Temperature(K)’].min())� �
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groupby ’Star Type’ and get a group of Hypergiant, then print
average of ’Radius’ column for this group.� �
 grouped = stars.groupby(’Star type’)

 hypergiant = grouped.get_group(’

Hypergiant’)

 print("Hypergiant average radius:",

hypergiant[’Radius(R/Ro)’].mean())� �
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Accessing Structured Data: NYC Open Data

Freely available source of data.

Maintained by the NYC data analytics team.

We will use several different ones for this class.

Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

Lab 7 covers accessing and downloading NYC OpenData datasets.
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Example: OpenData Film Permits
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Example: OpenData Film Permits

What’s the most popular street for filming?

What’s the most popular borough?

How many TV episodes were filmed?
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Example: OpenData Film Permits

Download the data as a CSV file and store on your computer.

Python program:
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Download the data as a CSV file and store on your computer.

Python program:
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Example: OpenData Film Permits

Can approach the other questions in the same way:

What’s the most popular street for filming?

What’s the most popular borough?

How many TV episodes were filmed?
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Recap

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData
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Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions!
Starting with Spring 19 V3, #4(b).
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Weekly Reminders!

Before next lecture, don’t forget to:

Work on this week’s Online Lab

Schedule an appointment to take the Quiz in lab 1001G Hunter North

If you haven’t already, schedule an appointment to take the Code
Review (one every week) in lab 1001G Hunter North

Submit this week’s 5 programming assignments (programs 31-35)

If you need help, schedule an appointment for Tutoring in lab 1001G
11:30am-5:30pm

Take the Lecture Preview on Blackboard on Monday (or no later than
10:15am on Tuesday)
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Lecture Slips & Writing Boards

Hand your lecture slip to a UTA.

Return writing boards as you leave.
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