
CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

CSci 127 (Hunter) Lecture 7 25 Oct 2022 1 / 64

Two Dimensional Array Slicing

� �
 import numpy as np

 numRows = 6

 numCols = 6

 a = np. zeros ((numRows, numCols))

 #create a table with 6 rows and 6 columns,

 #each element is initialized to be zero.

 #Do not forget parentheses around

 #numRows, numCols.� �
CSci 127 (Hunter) Lecture 7 25 Oct 2022 2 / 64

Two Dimensional Array Slicing: II� �
 for i in range(numRows):
 for j in range(numCols):

 a[i, j] = i*10 + j

 #range(numRows) returns [0, 1, 2, 3, 4, 5],

 #where outer loop variable i chooses from.

 #When i is 0 , run

 # for j in range(numCols):

 # a[i, j] = i*10 + j

 #When i is 1 , run

 # for j in range(numCols):

 # a[i, j] = i*10 + j

 #The last round of i is 5.� �
CSci 127 (Hunter) Lecture 7 25 Oct 2022 3 / 64

Two Dimensional Array Slicing: III� �
 for i in range(numRows):
 for j in range(numCols):
 print("%3i"%(a[i, j]), end="")

 #"%3i"%(a[i, j]) prints a[i, j] --

 #element of a at ith row and

 #jth column -- as an 3-digit int.

 #"%3i" is a place holder and is

filled by a[i, j].

 #If a[i, j] does not have 3 digits,

 #pad space(s) to the left.

 #end="" print w/o a new line.

 print() #print a new line after each row� �CSci 127 (Hunter) Lecture 7 25 Oct 2022 4 / 64

Two Dimensional Array Slicing: III� �
 print(a[0, 3:5])� �

row
col

0 1 2 3 4 5

0 0 1 2 3 4 5
1 10 11 12 13 14 15
2 20 21 22 23 24 25
3 30 31 32 33 34 35
4 40 41 42 43 44 45
5 50 51 52 53 54 55

row
col

0 1 2 3 4 5

0 0 1 2 3 4 5
1 10 11 12 13 14 15
2 20 21 22 23 24 25
3 30 31 32 33 34 35
4 40 41 42 43 44 45
5 50 51 52 53 54 55

print

[3. 4.]

CSci 127 (Hunter) Lecture 7 25 Oct 2022 5 / 64

Two Dimensional Array Slicing: III� �
 print(a[0, 3:5])� �

row
col

0 1 2 3 4 5

0 0 1 2 3 4 5
1 10 11 12 13 14 15
2 20 21 22 23 24 25
3 30 31 32 33 34 35
4 40 41 42 43 44 45
5 50 51 52 53 54 55

row
col

0 1 2 3 4 5

0 0 1 2 3 4 5
1 10 11 12 13 14 15
2 20 21 22 23 24 25
3 30 31 32 33 34 35
4 40 41 42 43 44 45
5 50 51 52 53 54 55

print

[3. 4.]

CSci 127 (Hunter) Lecture 7 25 Oct 2022 5 / 64

Two Dimensional Array Slicing: IV� �
 print(a[4:, 4:])� �

row
col

0 1 2 3 4 5

0 0 1 2 3 4 5
1 10 11 12 13 14 15
2 20 21 22 23 24 25
3 30 31 32 33 34 35
4 40 41 42 43 44 45
5 50 51 52 53 54 55

row
col

0 1 2 3 4 5

0 0 1 2 3 4 5
1 10 11 12 13 14 15
2 20 21 22 23 24 25
3 30 31 32 33 34 35
4 40 41 42 43 44 45
5 50 51 52 53 54 55

Print out

[[44. 45.]

[54. 55.]]

CSci 127 (Hunter) Lecture 7 25 Oct 2022 6 / 64

Two Dimensional Array Slicing: IV� �
 print(a[4:, 4:])� �

row
col

0 1 2 3 4 5

0 0 1 2 3 4 5
1 10 11 12 13 14 15
2 20 21 22 23 24 25
3 30 31 32 33 34 35
4 40 41 42 43 44 45
5 50 51 52 53 54 55

row
col

0 1 2 3 4 5

0 0 1 2 3 4 5
1 10 11 12 13 14 15
2 20 21 22 23 24 25
3 30 31 32 33 34 35
4 40 41 42 43 44 45
5 50 51 52 53 54 55

Print out

[[44. 45.]

[54. 55.]]

CSci 127 (Hunter) Lecture 7 25 Oct 2022 6 / 64

Two Dimensional Array Slicing: V� �
 print(a[:, 2])� �

row
col

0 1 2 3 4 5

0 0 1 2 3 4 5
1 10 11 12 13 14 15
2 20 21 22 23 24 25
3 30 31 32 33 34 35
4 40 41 42 43 44 45
5 50 51 52 53 54 55

row
col

0 1 2 3 4 5

0 0 1 2 3 4 5
1 10 11 12 13 14 15
2 20 21 22 23 24 25
3 30 31 32 33 34 35
4 40 41 42 43 44 45
5 50 51 52 53 54 55

Print out

[2. 12. 22. 32. 42. 52.]

CSci 127 (Hunter) Lecture 7 25 Oct 2022 7 / 64

Two Dimensional Array Slicing: V� �
 print(a[:, 2])� �

row
col

0 1 2 3 4 5

0 0 1 2 3 4 5
1 10 11 12 13 14 15
2 20 21 22 23 24 25
3 30 31 32 33 34 35
4 40 41 42 43 44 45
5 50 51 52 53 54 55

row
col

0 1 2 3 4 5

0 0 1 2 3 4 5
1 10 11 12 13 14 15
2 20 21 22 23 24 25
3 30 31 32 33 34 35
4 40 41 42 43 44 45
5 50 51 52 53 54 55

Print out

[2. 12. 22. 32. 42. 52.]

CSci 127 (Hunter) Lecture 7 25 Oct 2022 7 / 64

Two Dimensional Array Slicing: VI� �
 print(a[2::2, ::2])� �

0 1 2 3 4 5

0 0 1 2 3 4 5
1 10 11 12 13 14 15
2 20 21 22 23 24 25
3 30 31 32 33 34 35
4 40 41 42 43 44 45
5 50 51 52 53 54 55

0 1 2 3 4 5

0 0 1 2 3 4 5
1 10 11 12 13 14 15

2 20 21 22 23 24 25
3 30 31 32 33 34 35

4 40 41 42 43 44 45
5 50 51 52 53 54 55

print

[[20. 22. 24.]

[40. 42. 44.]]

CSci 127 (Hunter) Lecture 7 25 Oct 2022 8 / 64

Two Dimensional Array Slicing: VI� �
 print(a[2::2, ::2])� �

0 1 2 3 4 5

0 0 1 2 3 4 5
1 10 11 12 13 14 15
2 20 21 22 23 24 25
3 30 31 32 33 34 35
4 40 41 42 43 44 45
5 50 51 52 53 54 55

0 1 2 3 4 5

0 0 1 2 3 4 5
1 10 11 12 13 14 15

2 20 21 22 23 24 25
3 30 31 32 33 34 35

4 40 41 42 43 44 45
5 50 51 52 53 54 55

print

[[20. 22. 24.]

[40. 42. 44.]]

CSci 127 (Hunter) Lecture 7 25 Oct 2022 8 / 64

Today’s Topics

Recap: Slicing & Images

Introduction to Functions

NYC Open Data

CSci 127 (Hunter) Lecture 7 25 Oct 2022 9 / 64

Today’s Topics

Recap: Slicing & Images

Introduction to Functions

NYC Open Data

CSci 127 (Hunter) Lecture 7 25 Oct 2022 10 / 64

Image and Array� �
 import matplotlib.pyplot as plt

 import numpy as np

 height= 20

 width = 30

 #An image is an array with height, width and

 #depth 3 for r(ed) g(reen) b(lue)

 img = np.zeros((height, width, 3))

 img[:height//2, :width//2, 0] = 1

 #which does this statement do? Same as

 #img[:height//2, :width//2] = [1,0,0]� �
CSci 127 (Hunter) Lecture 7 25 Oct 2022 11 / 64

Image and Array: II� �
 img[height//2:, :width//2, 1] = 1

 #which does this statement do? Same as

 #img[height//2:, :width//2] = [0,1,0]

 img[:height//2:2, width//2:, 2] = 1

 #What does this statement do?

 img[height//2:, width//2::2] = [1, 1, 0]

 #What does this statement do?

 plt.imshow(img)

 plt.show()� �
CSci 127 (Hunter) Lecture 7 25 Oct 2022 12 / 64

output for the above program

CSci 127 (Hunter) Lecture 7 25 Oct 2022 13 / 64

Challenge: Cropping Images

Crop an image to select the top quarter (upper left corner)

CSci 127 (Hunter) Lecture 7 25 Oct 2022 14 / 64

Challenge: Cropping Images� �
 import matplotlib.pyplot as plt

 import numpy as np

 img = plt.imread("csBridge.png")

 height = img.shape[0]

 width = img.shape[1]

 img2 = img[0:height//2, 0:width//2, :]

 #img2 is top left of img. Same as

 #img2 = img[:height//2, :width//2].

 plt.imshow(img2)

 plt.show()

 plt.imsave("top_left_csBridge.png", img2)� �CSci 127 (Hunter) Lecture 7 25 Oct 2022 15 / 64

Challenge: Cropping Images

CSci 127 (Hunter) Lecture 7 25 Oct 2022 16 / 64

Challenge: Cropping Images

0 width

height

width/2
0

height/2

CSci 127 (Hunter) Lecture 7 25 Oct 2022 17 / 64

Challenge: Cropping Images

0 width

height

width/2
0

height/2

How would you select the lower left corner?
img2 = img[height//2:, :width//2]

How would you select the upper right corner?
img2 = img[:height//2, width//2:]

How would you select the lower right corner?
img2 = img[height//2:, width//2:]

CSci 127 (Hunter) Lecture 7 25 Oct 2022 18 / 64

Challenge: Cropping Images

0 width

height

width/2
0

height/2

How would you select the lower left corner?

img2 = img[height//2:, :width//2]

How would you select the upper right corner?
img2 = img[:height//2, width//2:]

How would you select the lower right corner?
img2 = img[height//2:, width//2:]

CSci 127 (Hunter) Lecture 7 25 Oct 2022 18 / 64

Challenge: Cropping Images

0 width

height

width/2
0

height/2

How would you select the lower left corner?
img2 = img[height//2:, :width//2]

How would you select the upper right corner?
img2 = img[:height//2, width//2:]

How would you select the lower right corner?
img2 = img[height//2:, width//2:]

CSci 127 (Hunter) Lecture 7 25 Oct 2022 18 / 64

Challenge: Cropping Images

0 width

height

width/2
0

height/2

How would you select the lower left corner?
img2 = img[height//2:, :width//2]

How would you select the upper right corner?

img2 = img[:height//2, width//2:]

How would you select the lower right corner?
img2 = img[height//2:, width//2:]

CSci 127 (Hunter) Lecture 7 25 Oct 2022 18 / 64

Challenge: Cropping Images

0 width

height

width/2
0

height/2

How would you select the lower left corner?
img2 = img[height//2:, :width//2]

How would you select the upper right corner?
img2 = img[:height//2, width//2:]

How would you select the lower right corner?
img2 = img[height//2:, width//2:]

CSci 127 (Hunter) Lecture 7 25 Oct 2022 18 / 64

Challenge: Cropping Images

0 width

height

width/2
0

height/2

How would you select the lower left corner?
img2 = img[height//2:, :width//2]

How would you select the upper right corner?
img2 = img[:height//2, width//2:]

How would you select the lower right corner?

img2 = img[height//2:, width//2:]

CSci 127 (Hunter) Lecture 7 25 Oct 2022 18 / 64

Challenge: Cropping Images

0 width

height

width/2
0

height/2

How would you select the lower left corner?
img2 = img[height//2:, :width//2]

How would you select the upper right corner?
img2 = img[:height//2, width//2:]

How would you select the lower right corner?
img2 = img[height//2:, width//2:]

CSci 127 (Hunter) Lecture 7 25 Oct 2022 18 / 64

Today’s Topics

Recap: Slicing & Images

Introduction to Functions

NYC Open Data

CSci 127 (Hunter) Lecture 7 25 Oct 2022 19 / 64

Modularity

CSci 127 (Hunter) Lecture 7 25 Oct 2022 20 / 64

Modularity

CSci 127 (Hunter) Lecture 7 25 Oct 2022 21 / 64

Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

Naming conventions same as variables

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 25 Oct 2022 22 / 64

Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

Naming conventions same as variables

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 25 Oct 2022 22 / 64

Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

Naming conventions same as variables

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 25 Oct 2022 22 / 64

Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

Naming conventions same as variables

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 25 Oct 2022 22 / 64

Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

Naming conventions same as variables

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:

Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 25 Oct 2022 22 / 64

Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

Naming conventions same as variables

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 25 Oct 2022 22 / 64

Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

Naming conventions same as variables

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,

which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 25 Oct 2022 22 / 64

Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

Naming conventions same as variables

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 25 Oct 2022 22 / 64

“Hello, World!” with Functions

CSci 127 (Hunter) Lecture 7 25 Oct 2022 23 / 64

Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 7 25 Oct 2022 24 / 64

functions - modules - packages

CSci 127 (Hunter) Lecture 7 25 Oct 2022 25 / 64

functions - modules - packages

CSci 127 (Hunter) Lecture 7 25 Oct 2022 26 / 64

functions - modules - packages

CSci 127 (Hunter) Lecture 7 25 Oct 2022 27 / 64

Stand-alone program

CSci 127 (Hunter) Lecture 7 25 Oct 2022 28 / 64

Challenge:
Predict what the code will do:� �
 def totalWithTax(food,tip):

 total = 0

 tax = 0.1

 total = food + food * tax

 total = total + tip

 return(total)

 lunch = float(input(’Enter lunch total: ’))

 lTip = float(input(’Enter lunch tip: ’))

 lTotal = totalWithTax(lunch, lTip)

 print(’Lunch total is’, lTotal)� �
CSci 127 (Hunter) Lecture 7 25 Oct 2022 29 / 64

totalWithTax function: continued� �
 def totalWithTax(food,tip):

 total = 0

 tax = 0.1

 total = food + food * tax

 total = total + tip

 return(total)� �
Omit code to calculate lunch total...� �
 dinner= float(input(’Enter dinner total: ’))

 dTip = float(input(’Enter dinner tip: ’))

 dTotal = totalWithTax(dinner, dTip)

 print(’Dinner total is’, dTotal)� �
CSci 127 (Hunter) Lecture 7 25 Oct 2022 30 / 64

Scope

You can have multiple
functions.

Each function defines the scope
of its local variables

A variable defined inside a
function is local, i.e. defined
only inside that function.

CSci 127 (Hunter) Lecture 7 25 Oct 2022 31 / 64

Scope

You can have multiple
functions.

Each function defines the scope
of its local variables

A variable defined inside a
function is local, i.e. defined
only inside that function.

CSci 127 (Hunter) Lecture 7 25 Oct 2022 31 / 64

Scope

You can have multiple
functions.

Each function defines the scope
of its local variables

A variable defined inside a
function is local, i.e. defined
only inside that function.

CSci 127 (Hunter) Lecture 7 25 Oct 2022 31 / 64

Local Data?

CSci 127 (Hunter) Lecture 7 25 Oct 2022 32 / 64

Function Example: burger

Function name: burger (like a variable name, no space is allowed)
Input:

bread: representing for bread layer

meat: representing for meat layer

vegetable: representing for vegetable layer

Return: a hamburger
CSci 127 (Hunter) Lecture 7 25 Oct 2022 33 / 64

Burger function definition

Pseudocode of burger function.� �
 def burger(bread, meat, veg):

 pick a bread, put on top

 put meat

 put vegetable

 put a bread at the bottom

 return the burger made� �

CSci 127 (Hunter) Lecture 7 25 Oct 2022 34 / 64

Call burger function

� �
 def main():

 myBurger = burger("wheat bread", "beef",

"lettuce")

 eat myBurger� �
CSci 127 (Hunter) Lecture 7 25 Oct 2022 35 / 64

Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

CSci 127 (Hunter) Lecture 7 25 Oct 2022 36 / 64

Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

CSci 127 (Hunter) Lecture 7 25 Oct 2022 36 / 64

Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

CSci 127 (Hunter) Lecture 7 25 Oct 2022 36 / 64

Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

CSci 127 (Hunter) Lecture 7 25 Oct 2022 36 / 64

Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters.

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 7 25 Oct 2022 37 / 64

Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters.

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 7 25 Oct 2022 37 / 64

Challenge:
Circle the actual parameters and underline the formal parameters:

CSci 127 (Hunter) Lecture 7 25 Oct 2022 38 / 64

Challenge:
Circle the actual parameters and underline the formal parameters:

CSci 127 (Hunter) Lecture 7 25 Oct 2022 39 / 64

Challenge:
Predict what the code will do:� �
 def prob4():

 verse = "jam tomorrow and jam yesterday,

"

 print("The rule is,")

 c = mystery(verse)

 w = enigma(verse,c)

 print(c,w)
 def mystery(v):

 print(v)
 c = v.count("jam")

 return(c)
 def enigma(v,c):

 print("but never", v[-1])

 for i in range(c):
 print("jam")
 return("day.")
 prob4()� �

CSci 127 (Hunter) Lecture 7 25 Oct 2022 40 / 64

Challenge:
Predict what the code will do:� �
 def prob4():
 verse = ”jam tomorrow and jam yesterday,”
 print(”The rule is ,”)
 c = mystery(verse)
 w = enigma(verse,c)
 print(c,w)� �
Omit code of function mystery.� �
 def enigma(v,c):

 print("but never", v[-1])

 for i in range(c):
 print("jam")
 return("day.")
 prob4()� �CSci 127 (Hunter) Lecture 7 25 Oct 2022 41 / 64

Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 7 25 Oct 2022 42 / 64

Challenge:
Predict what the code will do:� �
 # From "Teaching with Python" by John Zelle

 def happy():

 print("Happy Birthday to you!")

 def sing(P):

 happy()

 happy()

 print("Happy Birthday dear " + P + "!")

 happy()

 sing("Fred")

 sing("Thomas")

 sing("Hunter")� �CSci 127 (Hunter) Lecture 7 25 Oct 2022 43 / 64

Challenge:

Fill in the missing code:

CSci 127 (Hunter) Lecture 7 25 Oct 2022 44 / 64

IDLE

(Demo with IDLE)

CSci 127 (Hunter) Lecture 7 25 Oct 2022 45 / 64

Github

Octocat

Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.

Also convenient place to host websites
(i.e. huntercsci127.github.io).

In Lab6 you set up github accounts to
copy (‘clone’) documents from the class
repo. (More in future courses.)

CSci 127 (Hunter) Lecture 7 25 Oct 2022 46 / 64

Github

Octocat

Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.

Also convenient place to host websites
(i.e. huntercsci127.github.io).

In Lab6 you set up github accounts to
copy (‘clone’) documents from the class
repo. (More in future courses.)

CSci 127 (Hunter) Lecture 7 25 Oct 2022 46 / 64

Github

Octocat

Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.

Also convenient place to host websites
(i.e. huntercsci127.github.io).

In Lab6 you set up github accounts to
copy (‘clone’) documents from the class
repo. (More in future courses.)

CSci 127 (Hunter) Lecture 7 25 Oct 2022 46 / 64

Github

Octocat

Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.

Also convenient place to host websites
(i.e. huntercsci127.github.io).

In Lab6 you set up github accounts to
copy (‘clone’) documents from the class
repo. (More in future courses.)

CSci 127 (Hunter) Lecture 7 25 Oct 2022 46 / 64

Github

Octocat

Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.

Also convenient place to host websites
(i.e. huntercsci127.github.io).

In Lab6 you set up github accounts to
copy (‘clone’) documents from the class
repo. (More in future courses.)

CSci 127 (Hunter) Lecture 7 25 Oct 2022 46 / 64

Github

Octocat

Used to collaborate on and share code,
documents, etc.

Supporting Open-Source Software:
original source code is made freely
available and may be redistributed and
modified.

More formally: git is a version control
protocol for tracking changes and versions
of documents.

Github provides hosting for repositories
(‘repos’) of code.

Also convenient place to host websites
(i.e. huntercsci127.github.io).

In Lab6 you set up github accounts to
copy (‘clone’) documents from the class
repo. (More in future courses.)

CSci 127 (Hunter) Lecture 7 25 Oct 2022 46 / 64

Recap: Functions

Functions are a way to break code into pieces,
that can be easily reused.

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 25 Oct 2022 47 / 64

Recap: Functions

Functions are a way to break code into pieces,
that can be easily reused.

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:

Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 25 Oct 2022 47 / 64

Recap: Functions

Functions are a way to break code into pieces,
that can be easily reused.

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 25 Oct 2022 47 / 64

Recap: Functions

Functions are a way to break code into pieces,
that can be easily reused.

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,

which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 25 Oct 2022 47 / 64

Recap: Functions

Functions are a way to break code into pieces,
that can be easily reused.

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 25 Oct 2022 47 / 64

Today’s Topics

Recap: Slicing & Images

Introduction to Functions

NYC Open Data

CSci 127 (Hunter) Lecture 7 25 Oct 2022 48 / 64

Design Challenge - Solution

Libraries: pandas

Process:
I Print max of ’Luminosity’ column
I Print min of ’Temperature’ column
I groupby ’Star Type’ and get group ’Hypergiant’ to print average

’Radius’

CSci 127 (Hunter) Lecture 7 25 Oct 2022 49 / 64

Design Challenge - Solution

Libraries: pandas

Process:
I Print max of ’Luminosity’ column

I Print min of ’Temperature’ column
I groupby ’Star Type’ and get group ’Hypergiant’ to print average

’Radius’

CSci 127 (Hunter) Lecture 7 25 Oct 2022 49 / 64

Design Challenge - Solution

Libraries: pandas

Process:
I Print max of ’Luminosity’ column
I Print min of ’Temperature’ column

I groupby ’Star Type’ and get group ’Hypergiant’ to print average
’Radius’

CSci 127 (Hunter) Lecture 7 25 Oct 2022 49 / 64

Design Challenge - Solution

Libraries: pandas

Process:
I Print max of ’Luminosity’ column
I Print min of ’Temperature’ column
I groupby ’Star Type’ and get group ’Hypergiant’ to print average

’Radius’

CSci 127 (Hunter) Lecture 7 25 Oct 2022 49 / 64

Design Challenge - Code

Libraries: pandas
import pandas as pd

stars = pd.read csv(’Stars.csv’)

Process:
I Print max of ’Luminosity’ column� �

 print(stars[’Luminosity(L/Lo)’].max())� �
I Prints min of ’Temperature’ column and store it in temp variable� �

 print(stars[’Temperature(K)’].min())� �

CSci 127 (Hunter) Lecture 7 25 Oct 2022 50 / 64

Design Challenge - Code

Libraries: pandas
import pandas as pd

stars = pd.read csv(’Stars.csv’)

Process:
I Print max of ’Luminosity’ column� �

 print(stars[’Luminosity(L/Lo)’].max())� �

I Prints min of ’Temperature’ column and store it in temp variable� �
 print(stars[’Temperature(K)’].min())� �

CSci 127 (Hunter) Lecture 7 25 Oct 2022 50 / 64

Design Challenge - Code

Libraries: pandas
import pandas as pd

stars = pd.read csv(’Stars.csv’)

Process:
I Print max of ’Luminosity’ column� �

 print(stars[’Luminosity(L/Lo)’].max())� �
I Prints min of ’Temperature’ column and store it in temp variable� �

 print(stars[’Temperature(K)’].min())� �

CSci 127 (Hunter) Lecture 7 25 Oct 2022 50 / 64

groupby ’Star Type’ and get a group of Hypergiant, then print
average of ’Radius’ column for this group.� �
 grouped = stars.groupby(’Star type’)

 hypergiant = grouped.get_group(’

Hypergiant’)

 print("Hypergiant average radius:",

hypergiant[’Radius(R/Ro)’].mean())� �

CSci 127 (Hunter) Lecture 7 25 Oct 2022 51 / 64

Accessing Structured Data: NYC Open Data

Freely available source of data.

Maintained by the NYC data analytics team.

We will use several different ones for this class.

Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

Lab 7 covers accessing and downloading NYC OpenData datasets.

CSci 127 (Hunter) Lecture 7 25 Oct 2022 52 / 64

Accessing Structured Data: NYC Open Data

Freely available source of data.

Maintained by the NYC data analytics team.

We will use several different ones for this class.

Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

Lab 7 covers accessing and downloading NYC OpenData datasets.

CSci 127 (Hunter) Lecture 7 25 Oct 2022 52 / 64

Accessing Structured Data: NYC Open Data

Freely available source of data.

Maintained by the NYC data analytics team.

We will use several different ones for this class.

Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

Lab 7 covers accessing and downloading NYC OpenData datasets.

CSci 127 (Hunter) Lecture 7 25 Oct 2022 52 / 64

Accessing Structured Data: NYC Open Data

Freely available source of data.

Maintained by the NYC data analytics team.

We will use several different ones for this class.

Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

Lab 7 covers accessing and downloading NYC OpenData datasets.

CSci 127 (Hunter) Lecture 7 25 Oct 2022 52 / 64

Accessing Structured Data: NYC Open Data

Freely available source of data.

Maintained by the NYC data analytics team.

We will use several different ones for this class.

Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

Lab 7 covers accessing and downloading NYC OpenData datasets.

CSci 127 (Hunter) Lecture 7 25 Oct 2022 52 / 64

Example: OpenData Film Permits

CSci 127 (Hunter) Lecture 7 25 Oct 2022 53 / 64

Example: OpenData Film Permits

What’s the most popular street for filming?

What’s the most popular borough?

How many TV episodes were filmed?

CSci 127 (Hunter) Lecture 7 25 Oct 2022 54 / 64

Example: OpenData Film Permits

What’s the most popular street for filming?

What’s the most popular borough?

How many TV episodes were filmed?

CSci 127 (Hunter) Lecture 7 25 Oct 2022 54 / 64

Example: OpenData Film Permits

What’s the most popular street for filming?

What’s the most popular borough?

How many TV episodes were filmed?

CSci 127 (Hunter) Lecture 7 25 Oct 2022 54 / 64

Example: OpenData Film Permits

Download the data as a CSV file and store on your computer.

Python program:

CSci 127 (Hunter) Lecture 7 25 Oct 2022 55 / 64

Example: OpenData Film Permits

Download the data as a CSV file and store on your computer.

Python program:

CSci 127 (Hunter) Lecture 7 25 Oct 2022 55 / 64

Example: OpenData Film Permits

Download the data as a CSV file and store on your computer.

Python program:

CSci 127 (Hunter) Lecture 7 25 Oct 2022 56 / 64

Example: OpenData Film Permits

Download the data as a CSV file and store on your computer.

Python program:

CSci 127 (Hunter) Lecture 7 25 Oct 2022 57 / 64

Example: OpenData Film Permits

Download the data as a CSV file and store on your computer.

Python program:

CSci 127 (Hunter) Lecture 7 25 Oct 2022 58 / 64

Example: OpenData Film Permits

Download the data as a CSV file and store on your computer.

Python program:

CSci 127 (Hunter) Lecture 7 25 Oct 2022 59 / 64

Example: OpenData Film Permits

Can approach the other questions in the same way:

What’s the most popular street for filming?

What’s the most popular borough?

How many TV episodes were filmed?

CSci 127 (Hunter) Lecture 7 25 Oct 2022 60 / 64

Recap

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

CSci 127 (Hunter) Lecture 7 25 Oct 2022 61 / 64

Recap

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:

Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

CSci 127 (Hunter) Lecture 7 25 Oct 2022 61 / 64

Recap

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

CSci 127 (Hunter) Lecture 7 25 Oct 2022 61 / 64

Recap

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,

which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

CSci 127 (Hunter) Lecture 7 25 Oct 2022 61 / 64

Recap

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

CSci 127 (Hunter) Lecture 7 25 Oct 2022 61 / 64

Recap

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

CSci 127 (Hunter) Lecture 7 25 Oct 2022 61 / 64

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions!
Starting with Spring 19 V3, #4(b).

CSci 127 (Hunter) Lecture 7 25 Oct 2022 62 / 64

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions!
Starting with Spring 19 V3, #4(b).

CSci 127 (Hunter) Lecture 7 25 Oct 2022 62 / 64

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions!
Starting with Spring 19 V3, #4(b).

CSci 127 (Hunter) Lecture 7 25 Oct 2022 62 / 64

Weekly Reminders!

Before next lecture, don’t forget to:

Work on this week’s Online Lab

Schedule an appointment to take the Quiz in lab 1001G Hunter North

If you haven’t already, schedule an appointment to take the Code
Review (one every week) in lab 1001G Hunter North

Submit this week’s 5 programming assignments (programs 31-35)

If you need help, schedule an appointment for Tutoring in lab 1001G
11:30am-5:30pm

Take the Lecture Preview on Blackboard on Monday (or no later than
10:15am on Tuesday)

CSci 127 (Hunter) Lecture 7 25 Oct 2022 63 / 64

Weekly Reminders!

Before next lecture, don’t forget to:

Work on this week’s Online Lab

Schedule an appointment to take the Quiz in lab 1001G Hunter North

If you haven’t already, schedule an appointment to take the Code
Review (one every week) in lab 1001G Hunter North

Submit this week’s 5 programming assignments (programs 31-35)

If you need help, schedule an appointment for Tutoring in lab 1001G
11:30am-5:30pm

Take the Lecture Preview on Blackboard on Monday (or no later than
10:15am on Tuesday)

CSci 127 (Hunter) Lecture 7 25 Oct 2022 63 / 64

Weekly Reminders!

Before next lecture, don’t forget to:

Work on this week’s Online Lab

Schedule an appointment to take the Quiz in lab 1001G Hunter North

If you haven’t already, schedule an appointment to take the Code
Review (one every week) in lab 1001G Hunter North

Submit this week’s 5 programming assignments (programs 31-35)

If you need help, schedule an appointment for Tutoring in lab 1001G
11:30am-5:30pm

Take the Lecture Preview on Blackboard on Monday (or no later than
10:15am on Tuesday)

CSci 127 (Hunter) Lecture 7 25 Oct 2022 63 / 64

Weekly Reminders!

Before next lecture, don’t forget to:

Work on this week’s Online Lab

Schedule an appointment to take the Quiz in lab 1001G Hunter North

If you haven’t already, schedule an appointment to take the Code
Review (one every week) in lab 1001G Hunter North

Submit this week’s 5 programming assignments (programs 31-35)

If you need help, schedule an appointment for Tutoring in lab 1001G
11:30am-5:30pm

Take the Lecture Preview on Blackboard on Monday (or no later than
10:15am on Tuesday)

CSci 127 (Hunter) Lecture 7 25 Oct 2022 63 / 64

Weekly Reminders!

Before next lecture, don’t forget to:

Work on this week’s Online Lab

Schedule an appointment to take the Quiz in lab 1001G Hunter North

If you haven’t already, schedule an appointment to take the Code
Review (one every week) in lab 1001G Hunter North

Submit this week’s 5 programming assignments (programs 31-35)

If you need help, schedule an appointment for Tutoring in lab 1001G
11:30am-5:30pm

Take the Lecture Preview on Blackboard on Monday (or no later than
10:15am on Tuesday)

CSci 127 (Hunter) Lecture 7 25 Oct 2022 63 / 64

Weekly Reminders!

Before next lecture, don’t forget to:

Work on this week’s Online Lab

Schedule an appointment to take the Quiz in lab 1001G Hunter North

If you haven’t already, schedule an appointment to take the Code
Review (one every week) in lab 1001G Hunter North

Submit this week’s 5 programming assignments (programs 31-35)

If you need help, schedule an appointment for Tutoring in lab 1001G
11:30am-5:30pm

Take the Lecture Preview on Blackboard on Monday (or no later than
10:15am on Tuesday)

CSci 127 (Hunter) Lecture 7 25 Oct 2022 63 / 64

Lecture Slips & Writing Boards

Hand your lecture slip to a UTA.

Return writing boards as you leave.

CSci 127 (Hunter) Lecture 7 25 Oct 2022 64 / 64

