
CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

This lecture will be recorded

CSci 127 (Hunter) Lecture 8 26 October 2021 1 / 34



Frequently Asked Questions

From email

Can you go through the OpenData challenge from last week?

Yes, we’ll start with functions, and then go on to the OpenData challenge.

Do I have to take the final?
Yes, you must to pass the final (60 out of 100 points) to the pass the class.
Please review the grading policy on the course syllabus:
https://huntercsci127.github.io/f21/syl.html

Can I take the course Credit/No Credit?
Yes, but check with your advisor that it is possible with your major and standing.
Learn more about it here:
http://catalog.hunter.cuny.edu/content.php?catoid=43&navoid=13649

CSci 127 (Hunter) Lecture 8 26 October 2021 2 / 34

https://huntercsci127.github.io/f21/syl.html
http://catalog.hunter.cuny.edu/content.php?catoid=43&navoid=13649


Frequently Asked Questions

From email

Can you go through the OpenData challenge from last week?
Yes, we’ll start with functions, and then go on to the OpenData challenge.

Do I have to take the final?
Yes, you must to pass the final (60 out of 100 points) to the pass the class.
Please review the grading policy on the course syllabus:
https://huntercsci127.github.io/f21/syl.html

Can I take the course Credit/No Credit?
Yes, but check with your advisor that it is possible with your major and standing.
Learn more about it here:
http://catalog.hunter.cuny.edu/content.php?catoid=43&navoid=13649

CSci 127 (Hunter) Lecture 8 26 October 2021 2 / 34

https://huntercsci127.github.io/f21/syl.html
http://catalog.hunter.cuny.edu/content.php?catoid=43&navoid=13649


Frequently Asked Questions

From email

Can you go through the OpenData challenge from last week?
Yes, we’ll start with functions, and then go on to the OpenData challenge.

Do I have to take the final?
Yes, you must to pass the final (60 out of 100 points) to the pass the class.
Please review the grading policy on the course syllabus:
https://huntercsci127.github.io/f21/syl.html

Can I take the course Credit/No Credit?
Yes, but check with your advisor that it is possible with your major and standing.
Learn more about it here:
http://catalog.hunter.cuny.edu/content.php?catoid=43&navoid=13649

CSci 127 (Hunter) Lecture 8 26 October 2021 2 / 34

https://huntercsci127.github.io/f21/syl.html
http://catalog.hunter.cuny.edu/content.php?catoid=43&navoid=13649


Frequently Asked Questions

From email

Can you go through the OpenData challenge from last week?
Yes, we’ll start with functions, and then go on to the OpenData challenge.

Do I have to take the final?
Yes, you must to pass the final (60 out of 100 points) to the pass the class.
Please review the grading policy on the course syllabus:
https://huntercsci127.github.io/f21/syl.html

Can I take the course Credit/No Credit?
Yes, but check with your advisor that it is possible with your major and standing.
Learn more about it here:
http://catalog.hunter.cuny.edu/content.php?catoid=43&navoid=13649

CSci 127 (Hunter) Lecture 8 26 October 2021 2 / 34

https://huntercsci127.github.io/f21/syl.html
http://catalog.hunter.cuny.edu/content.php?catoid=43&navoid=13649


Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Design Challenge

CSci 127 (Hunter) Lecture 8 26 October 2021 3 / 34



Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Design Challenge

CSci 127 (Hunter) Lecture 8 26 October 2021 4 / 34



Recap: Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 26 October 2021 5 / 34



Recap: Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 26 October 2021 5 / 34



Recap: Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 26 October 2021 5 / 34



Recap: Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 26 October 2021 5 / 34



Recap: Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 26 October 2021 5 / 34



Recap: Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parenthesis, both
in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters.

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 26 October 2021 6 / 34



Challenge:

What are the formal parameters? What is returned?

CSci 127 (Hunter) Lecture 8 26 October 2021 7 / 34



Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 8 26 October 2021 8 / 34



Input Parameters

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 8 26 October 2021 9 / 34



Input Parameters

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 8 26 October 2021 9 / 34



Input Parameters

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 8 26 October 2021 9 / 34



Input Parameters

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 8 26 October 2021 9 / 34



Input Parameters

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 8 26 October 2021 9 / 34



Input Parameters: What about Lists?

When called, the actual parameter values
are copied to the formal parameters.

What is copied with a list?

The address of the list, but not the
individual elements.

The actual parameters do not change, but
the inside elements might.

Easier to see with a demo.

CSci 127 (Hunter) Lecture 8 26 October 2021 10 / 34



Input Parameters: What about Lists?

When called, the actual parameter values
are copied to the formal parameters.

What is copied with a list?

The address of the list, but not the
individual elements.

The actual parameters do not change, but
the inside elements might.

Easier to see with a demo.

CSci 127 (Hunter) Lecture 8 26 October 2021 10 / 34



Input Parameters: What about Lists?

When called, the actual parameter values
are copied to the formal parameters.

What is copied with a list?

The address of the list, but not the
individual elements.

The actual parameters do not change, but
the inside elements might.

Easier to see with a demo.

CSci 127 (Hunter) Lecture 8 26 October 2021 10 / 34



Input Parameters: What about Lists?

When called, the actual parameter values
are copied to the formal parameters.

What is copied with a list?

The address of the list, but not the
individual elements.

The actual parameters do not change, but
the inside elements might.

Easier to see with a demo.

CSci 127 (Hunter) Lecture 8 26 October 2021 10 / 34



Input Parameters: What about Lists?

When called, the actual parameter values
are copied to the formal parameters.

What is copied with a list?

The address of the list, but not the
individual elements.

The actual parameters do not change, but
the inside elements might.

Easier to see with a demo.

CSci 127 (Hunter) Lecture 8 26 October 2021 10 / 34



Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 8 26 October 2021 11 / 34



Challenge:

Predict what the code will do:

CSci 127 (Hunter) Lecture 8 26 October 2021 12 / 34



IDLE

(Demo with IDLE)

CSci 127 (Hunter) Lecture 8 26 October 2021 13 / 34



Lecture Quiz

Log-in to Gradescope

Find LECTURE 8 Quiz

Take the quiz

You have 3 minutes

CSci 127 (Hunter) Lecture 8 26 October 2021 14 / 34



Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Design Challenge

CSci 127 (Hunter) Lecture 8 26 October 2021 15 / 34



OpenData Design Question

Design an algorithm that finds the closest collision.

CSci 127 (Hunter) Lecture 8 26 October 2021 16 / 34



OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:
1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Print the location with the smallest distance.

Let’s use function names as placeholders for the ones we’re unsure...

CSci 127 (Hunter) Lecture 8 26 October 2021 17 / 34



OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:
1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Print the location with the smallest distance.

Let’s use function names as placeholders for the ones we’re unsure...

CSci 127 (Hunter) Lecture 8 26 October 2021 17 / 34



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", closestLat, "and lon:",

closestLon)

CSci 127 (Hunter) Lecture 8 26 October 2021 18 / 34



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", closestLat, "and lon:",

closestLon)

CSci 127 (Hunter) Lecture 8 26 October 2021 18 / 34



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", closestLat, "and lon:",

closestLon)

CSci 127 (Hunter) Lecture 8 26 October 2021 18 / 34



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", closestLat, "and lon:",

closestLon)

CSci 127 (Hunter) Lecture 8 26 October 2021 18 / 34



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", closestLat, "and lon:",

closestLon)

CSci 127 (Hunter) Lecture 8 26 October 2021 18 / 34



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", closestLat, "and lon:",

closestLon)

CSci 127 (Hunter) Lecture 8 26 October 2021 18 / 34



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", closestLat, "and lon:",

closestLon)

CSci 127 (Hunter) Lecture 8 26 October 2021 18 / 34



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", closestLat, "and lon:",

closestLon)

CSci 127 (Hunter) Lecture 8 26 October 2021 18 / 34



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", closestLat, "and lon:",

closestLon)

CSci 127 (Hunter) Lecture 8 26 October 2021 18 / 34



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", closestLat, "and lon:",

closestLon)

CSci 127 (Hunter) Lecture 8 26 October 2021 18 / 34



Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Design Challenge

CSci 127 (Hunter) Lecture 8 26 October 2021 19 / 34



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 26 October 2021 20 / 34



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 26 October 2021 20 / 34



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 26 October 2021 20 / 34



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 26 October 2021 20 / 34



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 26 October 2021 20 / 34



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 26 October 2021 20 / 34



Challenge:

http://koalastothemax.com

Top-down design puzzle:

I What does koalastomax do?
I What does each circle represent?

Write a high-level design for it.

Translate into code with function calls.

CSci 127 (Hunter) Lecture 8 26 October 2021 21 / 34



Demo

CSci 127 (Hunter) Lecture 8 26 October 2021 22 / 34



Demo

CSci 127 (Hunter) Lecture 8 26 October 2021 22 / 34



Demo

CSci 127 (Hunter) Lecture 8 26 October 2021 22 / 34



Demo

CSci 127 (Hunter) Lecture 8 26 October 2021 23 / 34



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 26 October 2021 24 / 34



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 26 October 2021 24 / 34



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:

I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 26 October 2021 24 / 34



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,

I Divide the region into 4 quarters.
I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 26 October 2021 24 / 34



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.

I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 26 October 2021 24 / 34



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each quarter.

I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 26 October 2021 24 / 34



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 26 October 2021 24 / 34



Averaging numpy arrays
Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 26 October 2021 25 / 34



Averaging numpy arrays
Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 26 October 2021 25 / 34



Averaging numpy arrays
Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 26 October 2021 25 / 34



Averaging numpy arrays
Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 26 October 2021 25 / 34



Averaging numpy arrays
Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 26 October 2021 25 / 34



Averaging numpy arrays
Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 26 October 2021 25 / 34



Averaging numpy arrays
Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 26 October 2021 25 / 34



Averaging numpy arrays
Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 26 October 2021 25 / 34



Averaging numpy arrays
Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 26 October 2021 25 / 34



Averaging numpy arrays
Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 26 October 2021 25 / 34



Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Design Challenge

CSci 127 (Hunter) Lecture 8 26 October 2021 26 / 34



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Find all current city job postings for internship positions.

CSci 127 (Hunter) Lecture 8 26 October 2021 27 / 34



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:
1 Open the file.
2 Select the rows that have “intern” in the business title.
3 Print out those rows.

CSci 127 (Hunter) Lecture 8 26 October 2021 28 / 34



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:
1 Open the file.
2 Select the rows that have “intern” in the business title.
3 Print out those rows.

CSci 127 (Hunter) Lecture 8 26 October 2021 28 / 34



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:

1 Open the file.
2 Select the rows that have “intern” in the business title.
3 Print out those rows.

CSci 127 (Hunter) Lecture 8 26 October 2021 28 / 34



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:
1 Open the file.

2 Select the rows that have “intern” in the business title.
3 Print out those rows.

CSci 127 (Hunter) Lecture 8 26 October 2021 28 / 34



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:
1 Open the file.
2 Select the rows that have “intern” in the business title.

3 Print out those rows.

CSci 127 (Hunter) Lecture 8 26 October 2021 28 / 34



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:
1 Open the file.
2 Select the rows that have “intern” in the business title.
3 Print out those rows.

CSci 127 (Hunter) Lecture 8 26 October 2021 28 / 34



Recap

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

CSci 127 (Hunter) Lecture 8 26 October 2021 29 / 34



Recap

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

CSci 127 (Hunter) Lecture 8 26 October 2021 29 / 34



Recap

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

CSci 127 (Hunter) Lecture 8 26 October 2021 29 / 34



Recap

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

CSci 127 (Hunter) Lecture 8 26 October 2021 29 / 34



Recap

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

CSci 127 (Hunter) Lecture 8 26 October 2021 29 / 34



Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions! Starting with S18, V1, #4a and #4b.

CSci 127 (Hunter) Lecture 8 26 October 2021 30 / 34



Final Exam: Spring 2018, Version 1, #4a

CSci 127 (Hunter) Lecture 8 26 October 2021 31 / 34



Final Exam: Spring 2018, Version 1, #4a

(Demo with trinket)

CSci 127 (Hunter) Lecture 8 26 October 2021 32 / 34



Final Exam: Spring 2018, Version 1, #4b

CSci 127 (Hunter) Lecture 8 26 October 2021 33 / 34



Weekly Reminders!

Before next lecture, don’t forget to:

Work on this week’s Online Lab

Schedule an appointment to take the Quiz in lab 1001E Hunter North

If you haven’t already, schedule an appointment to take the Code
Review (one every two weeks) in lab 1001E Hunter North

Submit this week’s 5 programming assignments (programs 36-40)

If you need help, schedule an appointment for Tutoring in lab 1001E
11am-5pm

Take the Lecture Preview on Blackboard on Monday (or no later than
10am on Tuesday)

CSci 127 (Hunter) Lecture 8 26 October 2021 34 / 34

https://hunter-cuny.campus.eab.com/pal/34ufgGQT4s
https://hunter-cuny.campus.eab.com/pal/heTKn65eu4
https://hunter-cuny.campus.eab.com/pal/heTKn65eu4
https://huntercsci127.github.io/f21/ps.html
https://hunter-cuny.campus.eab.com/pal/7s9Lfi1CH3


Weekly Reminders!

Before next lecture, don’t forget to:

Work on this week’s Online Lab

Schedule an appointment to take the Quiz in lab 1001E Hunter North

If you haven’t already, schedule an appointment to take the Code
Review (one every two weeks) in lab 1001E Hunter North

Submit this week’s 5 programming assignments (programs 36-40)

If you need help, schedule an appointment for Tutoring in lab 1001E
11am-5pm

Take the Lecture Preview on Blackboard on Monday (or no later than
10am on Tuesday)

CSci 127 (Hunter) Lecture 8 26 October 2021 34 / 34

https://hunter-cuny.campus.eab.com/pal/34ufgGQT4s
https://hunter-cuny.campus.eab.com/pal/heTKn65eu4
https://hunter-cuny.campus.eab.com/pal/heTKn65eu4
https://huntercsci127.github.io/f21/ps.html
https://hunter-cuny.campus.eab.com/pal/7s9Lfi1CH3


Weekly Reminders!

Before next lecture, don’t forget to:

Work on this week’s Online Lab

Schedule an appointment to take the Quiz in lab 1001E Hunter North

If you haven’t already, schedule an appointment to take the Code
Review (one every two weeks) in lab 1001E Hunter North

Submit this week’s 5 programming assignments (programs 36-40)

If you need help, schedule an appointment for Tutoring in lab 1001E
11am-5pm

Take the Lecture Preview on Blackboard on Monday (or no later than
10am on Tuesday)

CSci 127 (Hunter) Lecture 8 26 October 2021 34 / 34

https://hunter-cuny.campus.eab.com/pal/34ufgGQT4s
https://hunter-cuny.campus.eab.com/pal/heTKn65eu4
https://hunter-cuny.campus.eab.com/pal/heTKn65eu4
https://huntercsci127.github.io/f21/ps.html
https://hunter-cuny.campus.eab.com/pal/7s9Lfi1CH3


Weekly Reminders!

Before next lecture, don’t forget to:

Work on this week’s Online Lab

Schedule an appointment to take the Quiz in lab 1001E Hunter North

If you haven’t already, schedule an appointment to take the Code
Review (one every two weeks) in lab 1001E Hunter North

Submit this week’s 5 programming assignments (programs 36-40)

If you need help, schedule an appointment for Tutoring in lab 1001E
11am-5pm

Take the Lecture Preview on Blackboard on Monday (or no later than
10am on Tuesday)

CSci 127 (Hunter) Lecture 8 26 October 2021 34 / 34

https://hunter-cuny.campus.eab.com/pal/34ufgGQT4s
https://hunter-cuny.campus.eab.com/pal/heTKn65eu4
https://hunter-cuny.campus.eab.com/pal/heTKn65eu4
https://huntercsci127.github.io/f21/ps.html
https://hunter-cuny.campus.eab.com/pal/7s9Lfi1CH3


Weekly Reminders!

Before next lecture, don’t forget to:

Work on this week’s Online Lab

Schedule an appointment to take the Quiz in lab 1001E Hunter North

If you haven’t already, schedule an appointment to take the Code
Review (one every two weeks) in lab 1001E Hunter North

Submit this week’s 5 programming assignments (programs 36-40)

If you need help, schedule an appointment for Tutoring in lab 1001E
11am-5pm

Take the Lecture Preview on Blackboard on Monday (or no later than
10am on Tuesday)

CSci 127 (Hunter) Lecture 8 26 October 2021 34 / 34

https://hunter-cuny.campus.eab.com/pal/34ufgGQT4s
https://hunter-cuny.campus.eab.com/pal/heTKn65eu4
https://hunter-cuny.campus.eab.com/pal/heTKn65eu4
https://huntercsci127.github.io/f21/ps.html
https://hunter-cuny.campus.eab.com/pal/7s9Lfi1CH3


Weekly Reminders!

Before next lecture, don’t forget to:

Work on this week’s Online Lab

Schedule an appointment to take the Quiz in lab 1001E Hunter North

If you haven’t already, schedule an appointment to take the Code
Review (one every two weeks) in lab 1001E Hunter North

Submit this week’s 5 programming assignments (programs 36-40)

If you need help, schedule an appointment for Tutoring in lab 1001E
11am-5pm

Take the Lecture Preview on Blackboard on Monday (or no later than
10am on Tuesday)

CSci 127 (Hunter) Lecture 8 26 October 2021 34 / 34

https://hunter-cuny.campus.eab.com/pal/34ufgGQT4s
https://hunter-cuny.campus.eab.com/pal/heTKn65eu4
https://hunter-cuny.campus.eab.com/pal/heTKn65eu4
https://huntercsci127.github.io/f21/ps.html
https://hunter-cuny.campus.eab.com/pal/7s9Lfi1CH3

