CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

Frequently Asked Questions

From email and tutoring.

- When is the final? Is there a review sheet?

Frequently Asked Questions

From email and tutoring.

- When is the final? Is there a review sheet?

The official final is Monday, May 22 from 9-11 am.

Frequently Asked Questions

From email and tutoring.

- When is the final? Is there a review sheet?

The official final is Monday, May 22 from 9-11 am.
The early final exam (alternative date) is on Wednesday, May 17 in 1001G (time TBD).

Frequently Asked Questions

From email and tutoring.

- When is the final? Is there a review sheet?

The official final is Monday, May 22 from 9-11 am.
The early final exam (alternative date) is on Wednesday, May 17 in 1001G (time TBD).
Instead of a review sheet, we have:

Frequently Asked Questions

From email and tutoring.

- When is the final? Is there a review sheet?

The official final is Monday, May 22 from 9-11 am.
The early final exam (alternative date) is on Wednesday, May 17 in 1001G (time TBD).
Instead of a review sheet, we have:

- All previous final exams (and answer keys) on the website.

Frequently Asked Questions

From email and tutoring.

- When is the final? Is there a review sheet?

The official final is Monday, May 22 from 9-11 am.
The early final exam (alternative date) is on Wednesday, May 17 in 1001G (time TBD).
Instead of a review sheet, we have:

- All previous final exams (and answer keys) on the website.
- UTAs in drop-in tutoring happy to review concepts and old exam questions.

Frequently Asked Questions

From email and tutoring.

- When is the final? Is there a review sheet?

The official final is Monday, May 22 from 9-11 am.
The early final exam (alternative date) is on Wednesday, May 17 in 1001G (time TBD).
Instead of a review sheet, we have:

- All previous final exams (and answer keys) on the website.
- UTAs in drop-in tutoring happy to review concepts and old exam questions.
- To help practice, there will be a mock exam during our last meeting on May 16.

Frequently Asked Questions

From email and tutoring.

- When is the final? Is there a review sheet?

The official final is Monday, May 22 from 9-11 am.
The early final exam (alternative date) is on Wednesday, May 17 in 1001G (time TBD).
Instead of a review sheet, we have:

- All previous final exams (and answer keys) on the website.
- UTAs in drop-in tutoring happy to review concepts and old exam questions.
- To help practice, there will be a mock exam during our last meeting on May 16.
- The mock exam will be run exactly like the real final.

Frequently Asked Questions

From email and tutoring.

- When is the final? Is there a review sheet?

The official final is Monday, May 22 from 9-11 am.
The early final exam (alternative date) is on Wednesday, May 17 in 1001G (time TBD).
Instead of a review sheet, we have:

- All previous final exams (and answer keys) on the website.
- UTAs in drop-in tutoring happy to review concepts and old exam questions.
- To help practice, there will be a mock exam during our last meeting on May 16.
- The mock exam will be run exactly like the real final.
- If you are already acquainted with the logistics you will have less stress during the real event.

Today's Topics

- Design Patterns: Searching
- Python Recap
- Machine Language
- Machine Language: Jumps \& Loops
- Binary \& Hex Arithmetic
- Final Exam: Format

Today's Topics

- Design Patterns: Searching
- Python Recap
- Machine Language
- Machine Language: Jumps \& Loops
- Binary \& Hex Arithmetic
- Final Exam: Format

Predict what the code will do:

```
def search(nums, locate):
    found = False
    i = 0
    while not found and i < len(nums):
        print(nums[i])
        if locate == nums[i]:
            found = True
        else:
        i = i+1
    return(found)
nums= [1,4,10,6,5,42,9,8,12]
if search(nums,6):
    print('Found it! 6 is in the list!')
else:
    print('Did not find 6 in the list.')
```


Python Tutor

```
def search(nums, locate):
    found = False
    i = 0
    while not found and i < len(nums):
        print(nums[i])
        if locate =- nums[i]:
            found = True
        else:
            i = i+1
    return(found)
nums \(=[1,4,10,6,5,42,9,8,12]\)
if search(nums,6):
print('Found it! 6 is in the list!')
else:
print('Did not find 6 in the list. ')
```

(Demo with pythonTutor)

Design Pattern: Linear Search

```
def search(nums, locate):
    found = False
    i=0
    while not found and i< len(nums):
        print(nums[i])
        if locate == nums[i]:
            found = True
        else:
            i=i+1
    return(found)
nums=[1,4,10,6,5,42,9,8,12]
if search(nums,6):
    print('Found it! 6 is in the list!')
else:
    print('Did not find 6 in the list. ')
```

- Example of linear search.

Design Pattern: Linear Search

```
def search(nums, locate):
    found = False
    i=0
    while not found and i < len(nums):
        print(nums[i])
        if locate == nums[i]:
            found = True
        else:
    &i=i+1
    return(found)
nums=[1,4,10,6,5,42,9,8,12]
if search(nums,6):
    print('Found it! 6 is in the list!')
else:
    print('Did not find 6 in the list.')
```

- Example of linear search.
- Start at the beginning of the list.

Design Pattern: Linear Search

```
def search(nums, locate):
    found = False
    i = 0
    while not found and i}<len(nums)
        print(nums[i])
        if locate == nums[i]:
            found = True
        else:
    i = i+1
    return(found)
nums=[1,4,10,6,5,42,9,8,12]
if search(nums,6):
    print('Found it! 6 is in the list!')
else:
    print('Did not find 6 in the list.' ')
```

- Example of linear search.
- Start at the beginning of the list.
- Look at each item, one-by-one.

Design Pattern: Linear Search

```
def search(nums, locate):
    found = False
    i=0
    while not found and i< len(nums):
        print(nums[i])
        if locate == nums[i]:
            found = True
        else:
    i = i+1
nums=[1,4,10,6,5,42,9,8,12]
if search(nums,6):
    print('Found it! 6 is in the list!')
else:
    print('Did not find 6 in the list. ')
```

- Example of linear search.
- Start at the beginning of the list.
- Look at each item, one-by-one.
- Stop when found, or the end of list is reached.

Today's Topics

- Design Patterns: Searching
- Python Recap
- Machine Language
- Machine Language: Jumps \& Loops
- Binary \& Hex Arithmetic

Python \& Circuits Review: 10 Weeks in 10 Minutes

A whirlwind tour of the semester, so far...

Week 1: print(), loops, comments, \& turtles

Week 1: print(), loops, comments, \& turtles

- Introduced comments \& print():

\#Name: Thomas Hunter	\leftarrow These lines are comments
\#Date: September 1, 2017	\leftarrow (for us, not computer to read)
\#This program prints: Hello, World!	\leftarrow (this one also)
print ("Hello, World!")	\leftarrow Prints the string "Hello, World!" to the screen

Week 1: print(), loops, comments, \& turtles

- Introduced comments \& print():
\#Name: Thomas Hunter
\leftarrow These lines are comments
\#Date: September 1, 2017
\leftarrow (for us, not computer to read)
\#This program prints: Hello, World!
\leftarrow (this one also)
print("Hello, World!")
\leftarrow Prints the string "Hello, World!" to the screen
- As well as definite loops \& the turtle package:

Week 2: variables, data types, more on loops \& range()

Week 2: variables, data types, more on loops \& range()

- A variable is a reserved memory location for storing a value.

Week 2: variables, data types, more on loops \& range()

- A variable is a reserved memory location for storing a value.
- Different kinds, or types, of values need different amounts of space:
- int: integer or whole numbers

Week 2: variables, data types, more on loops \& range()

- A variable is a reserved memory location for storing a value.
- Different kinds, or types, of values need different amounts of space:
- int: integer or whole numbers
- float: floating point or real numbers

Week 2: variables, data types, more on loops \& range()

- A variable is a reserved memory location for storing a value.
- Different kinds, or types, of values need different amounts of space:
- int: integer or whole numbers
- float: floating point or real numbers
- string: sequence of characters

Week 2: variables, data types, more on loops \& range()

- A variable is a reserved memory location for storing a value.
- Different kinds, or types, of values need different amounts of space:
- int: integer or whole numbers
- float: floating point or real numbers
- string: sequence of characters
- list: a sequence of items

Week 2: variables, data types, more on loops \& range()

- A variable is a reserved memory location for storing a value.
- Different kinds, or types, of values need different amounts of space:
- int: integer or whole numbers
- float: floating point or real numbers
- string: sequence of characters
- list: a sequence of items
e.g. [3, 1, 4, 5, 9] or ['violet','purple','indigo']

Week 2: variables, data types, more on loops \& range()

- A variable is a reserved memory location for storing a value.
- Different kinds, or types, of values need different amounts of space:
- int: integer or whole numbers
- float: floating point or real numbers
- string: sequence of characters
- list: a sequence of items
e.g. [3, 1, 4, 5, 9] or ['violet','purple','indigo']
- class variables: for complex objects, like turtles.

Week 2: variables, data types, more on loops \& range()

- A variable is a reserved memory location for storing a value.
- Different kinds, or types, of values need different amounts of space:
- int: integer or whole numbers
- float: floating point or real numbers
- string: sequence of characters
- list: a sequence of items

```
e.g. [3, 1, 4, 5, 9] or ['violet','purple','indigo']
```

- class variables: for complex objects, like turtles.
- More on loops \& ranges:

```
#Predict what will be printed:
for num in [2,4,6,8,10]:
    print(num)
sum = 0
for x in range(0,12,2):
    print(x)
    sum = sum + x
print(sum)
for c in "ABCD":
    print(c)
```

Week 3: colors, hex, slices, numpy \& images

Color Name	HEX	Color
Black	$\# 000000$	
Navy	$\# 000080$	
DarkBlue	$\# 00008 \mathrm{~B}$	
Mediumblue	$\# 0000 \mathrm{CD}$	
Blue	$\# 0000 \mathrm{FE}$	

Week 3: colors, hex, slices, numpy \& images

Color Name	HEX	Color
Black	$\# 000000$	
Navy	$\# 000080$	
DarkBlue	$\# 00008 \mathrm{~B}$	
MediumBlue	$\# 0000 \mathrm{CD}$	
Blue	$\# 0000 \mathrm{FF}$	

Week 3: colors, hex, slices, numpy \& images

Color Name	HEX	Color
Black	$\# 000000$	
Navy	\#000080	
DarkBlue	$\# 00008 \mathrm{~B}$	
MediumBlue	$\# 0000 \mathrm{CD}$	
Blue	$\# 0000 \mathrm{FF}$	


```
>>> a[0,3:5]
array([3,4])
>>> a[4:,4:]
array([[44, 45],
    [54, 55]])
>>> a[:,2]
array([2,12,22,32,42,52])
>>> a[2::2,::2]
array([[20, 22,24]
    [40,42,44]])
```

0	1	2	3	4	5
10	11	12	13	14	15
20	21	22	23	24	25
30	31	32	33	34	35
40	41	42	43	44	45
50	51	52	53	54	55

Week 4: design problem (cropping images) \& decisions

Week 4: design problem (cropping images) \& decisions

- First: specify inputs/outputs. Input file name, output file name, upper, lower, left, right ("bounding box")

Week 4: design problem (cropping images) \& decisions

- First: specify inputs/outputs. Input file name, output file name, upper, lower, left, right ("bounding box")
- Next: write pseudocode.
(1) Import numpy and pyplot.
(2) Ask user for file names and dimensions for cropping.
(3) Save input file to an array.
(4) Copy the cropped portion to a new array.
(5) Save the new array to the output file.

Week 4: design problem (cropping images) \& decisions

- First: specify inputs/outputs. Input file name, output file name, upper, lower, left, right ("bounding box")
- Next: write pseudocode.
(1) Import numpy and pyplot.
(2) Ask user for file names and dimensions for cropping.
(3) Save input file to an array.
(4) Copy the cropped portion to a new array.
(5) Save the new array to the output file.
- Next: translate to Python.

Week 4: design problem (cropping images) \& decisions

```
yearBorn = int(input('Enter year born: '))
if yearBorn < 1946:
    print("Greatest Generation")
elif yearBorn <= 1964:
    print("Baby Boomer")
elif yearBorn <= 1984:
    print("Generation X")
elif yearBorn <= 2004:
    print("Millennial")
else:
    print("TBD")
x = int(input('Enter number: '))
if x % 2 == 0:
    print('Even number')
else:
    print('Odd number')
```


Week 5: logical operators, truth tables \& logical circuits

```
origin = "Indian Ocean"
winds = 100
if (winds > 74):
    print("Major storm, called a ", end="")
    if origin == "Indian Ocean" or origin == "South Pacific":
        print("cyclone.")
    elif origin == "North Pacific":
        print("typhoon.")
    else:
        print("hurricane.")
visibility = 0.2
winds = 40
conditions = "blowing snow"
if (winds > 35) and (visibility < 0.25) and \
    (conditions == "blowing snow" or conditions == "heavy snow"):
    print("Blizzard!")
```


Week 5: logical operators, truth tables \& logical circuits

```
origin = "Indian Ocean"
winds = 100
if (winds > 74):
    print("Major storm, called a ", end="")
    if origin == "Indian Ocean" or origin == "South Pacific":
        print("cyclone.")
    elif origin == "North Pacific":
        print("typhoon.")
    else:
        print("hurricane.")
visibility = 0.2
winds = 40
conditions = "blowing snow"
if (winds > 35) and (visibility < 0.25) and \
        (conditions == "blowing snow" or conditions == "heavy snow"):
    print("Blizzard!")
```

in1		in2	returns:
False	and	False	False
False	and	True	False
True	and	False	False
True	and	True	True

Week 6: structured data, pandas, \& more design

```
Source: bttpat//en.wikipedia.org/wiki/Denographica_of_Zew_York_City.....
A11 population figures are conslatent with present-day bouvdaries.
....'
1090,4937,2017,\ldots727,7661,2186,3623,2847,28423
M,
$100,60515,5740,6642,1755,4563,79215
1810,96373,8303,744,2267,5347,119734
1830,202589,20535,9049,3023,7082,242278
1840,312710,47613,14480,5346,10955,391144
1850,515547,138892,18593,8032,15061,696115
1860,813669,279122,32903,23593,25492,1174779
10, 1800,1164673,599495,56559,51980,38991,1911698
1890,1441216,830547,07050,89908,51693,2507414
190,1850943,1165582,152999,200507,67021,3437202
lol
1930,1867312,2560401,1079129,1265258,158346,6930446
```



```
M
```



```
lol
```



```
2015,1644518,2636735,2339150,1455444,074558,8550405
nycHistPop.csv
In Lab 6
```


Week 6: structured data, pandas, \& more design

```
import matplotlib.pyplot as plt
    import pandas as pd
```

Source: bttpat//en.wikipedia.org/wiki/Denographica_of_zew_York_City...
Al1 population filgure are conalistent with preeent-day boundaries.
Firgt oencuc after the concolidation of the five borouqhe....
......
Year, Manbattan, Brooklyn, Queens, Bronx, Staten Island, Total
$1698,4937,2017,727,7641$
$1698,4937,2017, \ldots, 727,7681$
$1771,21863,3623, \ldots 2847,28423$
$1790,33131,4549,6159,1781,3927,49447$
$1800,60515,5740,6642,1755,5463,79215$
$1810,96373,8303,7444,2267,5347,119734$
$1810,96373,8303,7444,2267,5397,119734$
$1820,123706,11187,8246,2782,6135,152056$
$1830,202589,20535,9049,3023,7082,242278$
$1830,202589,20535,9049,3023,7082,242278$
$1840,312710,47613,14480,5346,10965,391114$
$1840,312710,47613,14480,5346,10965,391114$
$1850,515547,138882,18593,8032,15061,696115$
$1850,515547,138882,1859,8032,15061,696115$
$1860,813669,279122,32903,23593,25492,1174779$
$1870,942929,419921,45468,37393,33029,1478103$
$1860,942929,419921,45468,37393,33029,11078103$
$1800,1164673,599495,56599,51980,38991,191169 \mathrm{~B}$
$1880,1164673,599495,56559,51980,38991,191169 \mathrm{~B}$
$1090,1441216,836547,07050,86900,51693,2507414$
$1900,1850093,1165582,152999,200507,67021,3437202$
1010

$1930,1867312,2560401,1079129,1265258,158346,6930446$
$1940,1889924,2699285,1297634,1394711,174441,7454995$
$1940,188924,26928,1296969,139471,174461,7454995$
$1950,1960101,278175,1550349,1451277,191555,7891957$

$1980,1428285,2230936,1891325,1168972,252121,7071639$
$1090,1487536,2300654,1951590,1203760,372977,732564$
2000

nycHistPop.csv
In Lab 6

Week 6: structured data, pandas, \& more design

```
import matplotlib.pyplot as plt
    import pandas as pd
    pop = pd.read_csv('nycHistPop.csv',skiprows=5)
```

Source: httpa://en.wikipedia.org/wiki/Demographica_of_Bew_York_City.
A11 population figuree are conslatent with present-day boundaries.
Firat oencuc after the concolidation of the five borougha,
$1698,4937,2017, \ldots 727,7681$
$1771,21863,3623, \ldots 284,28423$
$1790,33131,4549,6159,1781,3927,49447$
$1000,60515,570,642$
$1800,60515,5740,6642,1755,4563,79215$
$1010,96373,80317444,227,5497,11936$
$1810,96373,8303,6444,2256,5547,1199734$
$1820,123706,11187,8246,2782,6135,152056$
$1820,123766,11187,8246,2782,6135,152056$
$1830,202589,20535,9049,3023,7082,242278$
$1840,312710,47613,140$
$1840,312710,47613,14480,5346,10965,391114$
$1850,515547,138882,18593,8032,15061,696115$
$1850,515547,138882,18553,8032,15061,696115$
$1660,813669,279122,32903,23593,25492,117479$

$1180,1164673,599495,56559,51989,38991,191169 \mathrm{~B}$
$1090,1441216,836547,87050,80908,51693,2507414$

$1900,1850093,1166582,152999,200507,67021,3437202$
$1910,23152,163431,264041,430980,85969,4766803$

$1930,1867312,2560401,1079129,1265258,158346,6930446$
$1940,1889924,2696285,1297634,1394711,174441,7454995$
$1940,1889924,2693285,1297634,1394711,174441,7454995$
$1950,1960101,2738175,1550899,1451277,191555,7891957$

$1970,1539233,2602012,1986473,1471701,295443,7894862$
$1980,1428285,2230936,1891325,1168972,352121,7071639$

$2010,1585893,2503700,2230722,1385106,468735,8175133$
$2015,1644518,2666735,2399150,1455444,674558,8550405$
nycHistPop.csv
In Lab 6

Week 6: structured data, pandas, \& more design

```
import matplotlib.pyplot as plt
    import pandas as pd
    pop = pd.read_csv('nycHistPop.csv',skiprows=5)
```

Source: bttpa://en.wikipedia.org/wiki/Denographica_of_yew_York_City.
Source: stepa:/en.wikipedia.org/wiki/Denographica of aew_York Cily
Year, Manhattan, Brooklyn, Queens, Bronx, Staten Island, Total
$1698,4937,2017, \ldots, 727,7681$
$1771,21863,3623,2847,28423$
$1790,33131,4549,6159,1781,3427,49447$
$1000,60515,540,6512,175,363$
$1800,60515,5740,6642,1755,4563,79215$
$1010,9637,8303,744,2267,5347,119734$
$1910,96373,8303,744,2267,5347,119734$
$1820,12306,11117,28246,2782,6135,152056$
$1830,202589,20535,9049,3023,7082,242278$

$1850,515544,138892,18593,8032,105061,696115$
$1860,813669,279122,32903,23593,25492,1174779$

$1180,1164673,599495,56559,51989,38991,191169 \mathrm{~B}$
$1090,1441216,836547,87050,80908,51693,2507414$

$1900,185099,1166582,152999,200507,67021,3437202$
$1910,2331542,1634351,284041,430980,85969,4766803$
$1920,2284103,2018356,469042,732016,1651,5203$
$1910,23315+2,1634351,284041,430980,85969,4766863$
$1920,2284103,2018356,469042,732016,116531,562004 \mathrm{~B}$
$1930,1867312,2560401,1079129,1255258,15934,693046$
$1930,1867312,2560401,1079129,1265258,158346,6930446$
$1940,1889924,2696285,1297634,1394711,174441,7454995$
$1940,1889924,2693285,1297634,1394711,174441,7454995$
$1950,19600101,27317175,1550899,1451277,191555,7891957$

$1970,1539233,2602012,1986473,1471701,295443,789486$
$1900,1428285,2230936,1891325,1169972,352121,707163$

$2010,158573,2504700,2230722,1385106,466730,8175139$
$2015,1644518,2636735,2339150,1455444,074558,8550405$
nycHistPop.csv
In Lab 6

Week 6: structured data, pandas, \& more design

import matplotlib.pyplot as plt import pandas as pd
pop $=$ pd.read_csv('nycHistPop.csv',skiprows=5)

Source: bttpa://en.wikipedia.org/wiki/Denographica_of_Mew_York_City......
All pogulation figares are conslatent with present-day boundaries......., Firre concuc after the conaolidation of the five borouqha,......

Year,',Manhattan, Brookiyn, Queens, Bronx, Staten Island, Totai
$1698,4937,2017, \ldots, 727,7681$
$1771,21863,3623, \ldots, 2847,28423$
$1790,33131,4599,6159,1781,3927,49447$
$1600,60515,5740,6642,155,56,709$
$1800,60515,5740,6642,1755,4563,79215$
$1810,96373,8303,7444,2267,5347,119734$
$1810,96373,8303,744,2267,5347,119734$
$1820,123706,11187,8246,2722,6135,152056$
$1830,202589,20535,9049,3023,7082,242278$
$1830,202589,2653,9049,2023,182,242278$
$1840,312710,47613,1440,5346,1095,3114$
$1550,515544,138892,18593,8032,15061,696115$
$1850,515547,138892,18593,8032,15061,696115$
$1866,1313669,2912,32903,2359,25492,114799$
$1860,813669,279122,32903,23593,25492,1174779$
$11870,94292,41921,45468,3793,3309,1078103$
$18000,1164673,599495,56559,51980,389911,1911698$

$1090,1441216,835547,87050,69900,51693,2507414$
$1900,1850093,1166582,15299,2050,6721,343202$
$1910,2331542,1634351,284941,430980,85969,4766803$
 $1930,1867312,2560401,1079129,1265258,158346,6930446$
$1940,1889924,2698285,1297634,1394711,174441,7454995$
 $1960,1698281,2627319,1809579,1424815,221999,7791998$
$1970,1539233,2602012,1986473,1471701,295443,7894862$

 $2010,158879,250470,223072,11385106,469730,8175133$
$2015,1644518,2636735,2339150,1455444,074558,8550405$
nycHistPop.csv
In Lab 6

```
pop.plot(x="Year")
plt.show()
```


Week 7: functions

- Functions are a way to break code into pieces, that can be easily reused.

```
#Name: your name here
#Date: October 2017
#This program, uses functions,
# says hello to the world!
def main():
        print("Hello, World!")
if __name__ == "__main__"":
    main()
```


Week 7: functions

```
#Name: your name here
#Date: October 2017
#This program, uses functions,
# says hello to the world!
def main():
        print("Hello, World!")
if __name__ == "__main__"":
    main()
```

- Functions are a way to break code into pieces, that can be easily reused.
- Many languages require that all code must be organized with functions.

Week 7: functions

```
#Name: your name here
#Date: October 2017
#This program, uses functions,
# says hello to the world!
def main():
        print("Hello, World!")
if __name__ == "__main__":
    main()
```

- Functions are a way to break code into pieces, that can be easily reused.
- Many languages require that all code must be organized with functions.
- The opening function is often called main()

Week 7: functions

```
#Name: your name here
#Date: October 2017
#This program, uses functions,
# says hello to the world!
def main():
        print("Hello, World!")
if __name__ == "__main__"":
    main()
```

- Functions are a way to break code into pieces, that can be easily reused.
- Many languages require that all code must be organized with functions.
- The opening function is often called main()
- You call or invoke a function by typing its name, followed by any inputs, surrounded by parenthesis:

Week 7: functions

```
#Name: your name here
#Date: October 2017
#This program, uses functions,
# says hello to the world!
def main():
        print("Hello, World!")
if __name__ == "__main__"":
    main()
```

- Functions are a way to break code into pieces, that can be easily reused.
- Many languages require that all code must be organized with functions.
- The opening function is often called main()
- You call or invoke a function by typing its name, followed by any inputs, surrounded by parenthesis: Example: print("Hello", "World")

Week 7: functions

```
#Name: your name here
#Date: October 2017
#This program, uses functions,
# says hello to the world!
def main():
        print("Hello, World!")
if __name__ == "__main__"":
    main()
```

- Functions are a way to break code into pieces, that can be easily reused.
- Many languages require that all code must be organized with functions.
- The opening function is often called main()
- You call or invoke a function by typing its name, followed by any inputs, surrounded by parenthesis: Example: print("Hello", "World")
- Can write, or define your own functions,

Week 7: functions

```
#Name: your name here
#Date: October 2017
#This program, uses functions,
# says hello to the world!
def main():
        print("Hello, World!")
if __name__ == "__main__"":
    main()
```

- Functions are a way to break code into pieces, that can be easily reused.
- Many languages require that all code must be organized with functions.
- The opening function is often called main()
- You call or invoke a function by typing its name, followed by any inputs, surrounded by parenthesis: Example: print("Hello", "World")
- Can write, or define your own functions, which are stored, until invoked or called.

Week 8: function parameters, github

- Functions can have input parameters.

```
def totalWithTax(food,tip):
    total = 0
    tax = 0.0875
    total = food + food * tax
    total = total + tip
    return(total)
lunch = float(input('Enter lunch total: '))
lTip = float(input('Enter lunch tip:' ))
lTotal = totalWithTax(lunch, lTip)
print('Lunch total is', lTotal)
dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip:' ))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)
```


Week 8: function parameters, github

```
def totalWithTax(food,tip):
    total = 0
    tax = 0.0875
    total = food + food * tax
    total = total + tip
    return(total)
```

lunch $=$ float (input('Enter lunch total: '))
lTip = float(input('Enter lunch tip:'))
lTotal = totalWithTax (lunch, lTip)
print('Lunch total is', lTotal)
dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip:'))
dTotal = totalWithTax (dinner, dTip)
print('Dinner total is', dTotal)

- Functions can have input parameters.
- Surrounded by parenthesis, both in the function definition, and in the function call (invocation).

Week 8: function parameters, github

```
def totalWithTax(food,tip):
    total = 0
    tax = 0.0875
    total = food + food * tax
    total = total + tip
    return(total)
lunch = float(input('Enter lunch total: '))
lTip = float(input('Enter lunch tip:' ))
lTotal = totalWithTax(lunch, lTip)
print('Lunch total is', lTotal)
dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip:' ))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)
```

- Functions can have input parameters.
- Surrounded by parenthesis, both in the function definition, and in the function call (invocation).
- The "placeholders" in the function definition: formal parameters.

Week 8: function parameters, github

```
def totalWithTax(food,tip):
    total = 0
    tax = 0.0875
    total = food + food * tax
    total = total + tip
    return(total)
```

lunch $=$ float (input('Enter lunch total: '))
LTip = float(input('Enter lunch tip:'))
lTotal = totalWithTax (lunch, lTip)
print('Lunch total is', lTotal)
dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip:'))
dTotal = totalWithTax (dinner, dTip)
print('Dinner total is', dTotal)

- Functions can have input parameters.
- Surrounded by parenthesis, both in the function definition, and in the function call (invocation).
- The "placeholders" in the function definition: formal parameters.
- The ones in the function call: actual parameters

Week 8: function parameters, github

```
def totalWithTax(food,tip):
    total = 0
    tax = 0.0875
    total = food + food * tax
    total = total + tip
    return(total)
```

lunch $=$ float (input('Enter lunch total: '))
lTip = float(input('Enter lunch tip:'))
lTotal = totalWithTax (lunch, lTip)
print('Lunch total is', lTotal)
dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip:'))
dTotal = totalWithTax (dinner, dTip)
print('Dinner total is', dTotal)

- Functions can have input parameters.
- Surrounded by parenthesis, both in the function definition, and in the function call (invocation).
- The "placeholders" in the function definition: formal parameters.
- The ones in the function call: actual parameters
- Functions can also return values to where it was called.

Week 8: function parameters, github

```
def totalWithTa, rood,tip).
    total = 0
    tax = 0.0875
    total = food + food * tax
    total = total + tip
    return(total)
lunch = float(input('Enter lunch total: '))
lTip = float(input('Enter lunch tip:' ))
lTotal = totalWithTax lunch, lTip
print('Lunch total is', [Total)
                                    Actual Parameters
dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip:' ))
dTotal = totalWithTax dinner, dTip
print('Dinner total is', arotal)
```

- Functions can have input parameters.
- Surrounded by parenthesis, both in the function definition, and in the function call (invocation).
- The "placeholders" in the function definition: formal parameters.
- The ones in the function call: actual parameters.
- Functions can also return values to where it was called.

Week 9: top-down design, folium, loops, and random()


```
def main():
    dataF = getData()
    latColName, lonColName = getColumnNames()
    lat, lon = getLocale()
    cityMap = folium.Map(location = [lat,lon], tiles = 'cartodbpositron',zoom_start=11)
    dotAllPoints(cityMap,dataF,latColName,lonColName)
    markAndFindClosest(cityMap, dataF,latColName,lonColName,lat,lon)
    writeMap(cityMap)
```


Week 10: more on loops, max design pattern, random()

```
dist = int(input('Enter distance: '))
while dist < 0:
    print('Distances cannot be negative.')
    dist = int(input('Enter distance: '))
print('The distance entered is', dist)
```

- Indefinite (while) loops allow you to repeat a block of code as long as a condition holds.

```
```

import turtle

```
```

import turtle
import random
import random
trey = turtle.Turtle()
trey = turtle.Turtle()
trey.speed(10)
trey.speed(10)
for i in range(100):
for i in range(100):
trey.forward(10)
trey.forward(10)
a = random.randrange(0,360,90)
a = random.randrange(0,360,90)
trey.right(a)

```
```

 trey.right(a)
    ```
```


Week 10: more on loops, max design pattern, random()

```
dist = int(input('Enter distance: '))
while dist < 0:
    print('Distances cannot be negative.')
    dist = int(input('Enter distance: '))
print('The distance entered is', dist)
```

- Indefinite (while) loops allow you to repeat a block of code as long as a condition holds.
- Very useful for checking user input for correctness.

```
import turtle
```

import turtle
import random
import random
trey = turtle.Turtle()
trey = turtle.Turtle()
trey.speed(10)
trey.speed(10)
for i in range(100):
for i in range(100):
trey.forward(10)
trey.forward(10)
a = random.randrange(0,360,90)
a = random.randrange(0,360,90)
trey.right(a)

```
    trey.right(a)
```


Week 10: more on loops, max design pattern, random()

```
dist = int(input('Enter distance: '))
while dist < 0:
    print('Distances cannot be negative.')
    dist = int(input('Enter distance: '))
print('The distance entered is', dist)
    import turtle
    import random
    trey = turtle.Turtle()
    trey.speed(10)
    for i in range(100):
        trey.forward(10)
        a= random. randrange(0,360,90)
    trey.right(a)
```

- Indefinite (while) loops allow you to repeat a block of code as long as a condition holds.
- Very useful for checking user input for correctness.
- Python's built-in random package has useful methods for generating random whole numbers and real numbers.

Week 10: more on loops, max design pattern, random()

```
dist = int(input('Enter distance: '))
while dist < 0:
    print('Distances cannot be negative.')
    dist = int(input('Enter distance: '))
print('The distance entered is', dist)
```

 import turtle
 import random
 trey \(=\) turtle.Turtle(\()\)
 trey.speed(10)
 for \(i\) in range(100):
 trey.forward(10)
 \(a=\) random. randrange \((0,360,90)\)
 trey.right(a)
 - Indefinite (while) loops allow you to repeat a block of code as long as a condition holds.
- Very useful for checking user input for correctness.
- Python's built-in random package has useful methods for generating random whole numbers and real numbers.
- To use, must include: import random.

Week 10: more on loops, max design pattern, random()

```
dist = int(input('Enter distance: '))
while dist < 0:
    print('Distances cannot be negative.')
    dist = int(input('Enter distance: '))
print('The distance entered is', dist)
    import turtle
    import random
    trey = turtle.Turtle()
    trey.speed(10)
    for i in range(100):
    trey.forward(10)
    a= random.randrange(0,360,90)
    trey.right(a)
```

- Indefinite (while) loops allow you to repeat a block of code as long as a condition holds.
- Very useful for checking user input for correctness.
- Python's built-in random package has useful methods for generating random whole numbers and real numbers.
- To use, must include: import random.
- The max design pattern provides a template for finding maximum value from a list.

Python \& Circuits Review: 10 Weeks in 10 Minutes

- Input/Output (I/O): input() and print(); pandas for CSV files
- Types:
- Primitive: int, float, bool, string;
- Container: lists (but not dictionaries/hashes or tuples)
- Objects: turtles (used but did not design our own)
- Loops: definite \& indefinite
- Conditionals: if-elif-else
- Logical Expressions \& Circuits
- Functions: parameters \& returns
- Packages:
- Built-in: turtle, math, random
- Popular: numpy, matplotlib, pandas, folium

Today's Topics

- Design Patterns: Searching
- Python Recap
- Machine Language
- Machine Language: Jumps \& Loops
- Binary \& Hex Arithmetic

Low-Level vs. High-Level Languages

- Can view programming languages on a continuum.

Low-Level vs. High-Level Languages

- Can view programming languages on a continuum.
- Those that directly access machine instructions \& memory and have little abstraction are low-level languages

Low-Level vs. High-Level Languages

- Can view programming languages on a continuum.
- Those that directly access machine instructions \& memory and have little abstraction are low-level languages (e.g. machine language, assembly language).

Low-Level vs. High-Level Languages

(codeCommit)

- Can view programming languages on a continuum.
- Those that directly access machine instructions \& memory and have little abstraction are low-level languages
(e.g. machine language, assembly language).
- Those that have strong abstraction (allow programming paradigms independent of the machine details, such as complex variables, functions and looping that do not translate directly into machine code) are called high-level languages.

Low-Level vs. High-Level Languages

(codeCommit)

- Can view programming languages on a continuum.
- Those that directly access machine instructions \& memory and have little abstraction are low-level languages
(e.g. machine language, assembly language).
- Those that have strong abstraction (allow programming paradigms independent of the machine details, such as complex variables, functions and looping that do not translate directly into machine code) are called high-level languages.
- Some languages, like C, are in between- allowing both low level access and high level data structures.

Processing

Dies ist ein Blindtext. An ihm lisst sich vieles uber die Schrift ablesen, in der er gesetzt ist. Auf den ersten Bick wird der Grauwert der Schriffliache sidhtbar. Dann kann man prüfen, wie gut die Schrift zu lesen ist und wie sie auf den Leser wirkt Mies ist ein Rlindtevt An thom tiest sieht

def totalWithTax(food,tip):
total $=0$
tax $=0.0875$
total $=$ food + food * tax
total $=$ total + tip
return(total)

Machine Language

(Ruth Gordon \& Ester Gerston programming the ENIAC, UPenn)

Machine Language

Machine Language

- We will be writing programs in a simplified machine language, WeMIPS.

Machine Language

- We will be writing programs in a simplified machine language, WeMIPS.
- It is based on a reduced instruction set computer (RISC) design, originally developed by the MIPS Computer Systems.
(wiki)

Machine Language

(wiki)

- We will be writing programs in a simplified machine language, WeMIPS.
- It is based on a reduced instruction set computer (RISC) design, originally developed by the MIPS Computer Systems.
- Due to its small set of commands, processors can be designed to run those commands very efficiently.

Machine Language

(wiki)

- We will be writing programs in a simplified machine language, WeMIPS.
- It is based on a reduced instruction set computer (RISC) design, originally developed by the MIPS Computer Systems.
- Due to its small set of commands, processors can be designed to run those commands very efficiently.
- More in future architecture classes....

"Hello World!" in Simplified Machine Language

| Line: | | 3 | Gol | Show/Hide Demos | | | | | | | | | ser Gui | Unit Tests \| Docs | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | Additio | Stav | Looper | Stack Test H | Hello World | | | | | | |
| | | | Code Gen Save String | | Interactive | Binary2 Decimal | Decimal2 Binary | | | | | | |
| | | | Debug | | | | | | | | | | |
| | | | | | | | | | | | (Enable auto switching | | | |
| 3 A
 4 S | ADDI \$t0, \$zero, 72 \# H | | | | | | | | S | T | A | V | Stack | Log |
| 5 A | ADDI \$t0, \$zero, 101 \# e | | | | | | | | | | | | | |
| 6 S | SB \$to, $1(\$ \mathrm{sp})$ | | | | | | | | | s0: | | | | |
| 8 A | SB \$t0, $2(\$ \mathrm{sp})$ | | | | | | | | | s1: | | | | |
| ${ }_{1} 10$ A | ADDI \$to, \$zero, 108 \# 1 | | | | | | | | | s2: | | | | |
| 11 A | SB \$t $0,3(\$ \mathrm{sp})$ | | | | | | | | | s3: | | | | |
| 12 S | SB \$t0, $4(\$ \mathrm{sp})$ | | | | | | | | | | | | | |
| 13 A | ADDI \$to, \$zero, 32 \# (space) | | | | | | | | | s4: | | | | |
| 14 S | SB \$t0, 5(\$sp) | | | | | | | | | s5: | | | | |
| 15 A | ADDI \$to, \$zero, 119 \# w | | | | | | | | | s6: | | | | |
| 17 A | ADDI \$t0, \$zero, 111 \# o | | | | | | | | | | | | | |
| 18 S | SB \$t0, $7(\$ \mathrm{sp})$) | | | | | | | | | s7: | | | | |
| 19 A | ADDI \$t0, \$zero, 114 \# r | | | | | | | | | | | | | |
| 20 S | SB \$t0, 8(\$sp) | | | | | | | | | | | | | |
| 21 A | ADDI \$to, \$zero, 108 \# 1 | | | | | | | | | | | | | |
| 22 S | SB \$t0, 9 (\$sp) | | | | | | | | | | | | | |
| 23 A | ADDI \$to, \$zero, 100 \# d | | | | | | | | | | | | | |
| 24 S | SB \$to, $10(\$ \mathrm{sp})$ | | | | | | | | | | | | | |
| 25 A | ADDI \$to, \$zero, 33 \# ! | | | | | | | | | | | | | |
| 26 S | SB \$to, $11(\$ \mathrm{sp})$ | | | | | | | | | | | | | |
| 27 A | ADDI \$t0, \$zero, 0 \# (null) | | | | | | | | | | | | | |
| 28 S | SE \$to, $12(\$ \mathrm{sp})$ | | | | | | | | | | | | | |
| 29 | | | | | | | | | | | | | | | |
| $\begin{aligned} & 30 \mathrm{~A} \\ & 31 \mathrm{~A} \end{aligned}$ | ADDI \$v0, \$zero, 4 \# 4 is for print string | | | | | | | | | | | | | |
| 32 s | syscall | | | \# print to the log | | | | | | | | | | |

(WeMIPS)

WeMIPS

User Gudel Unt Testa | Docs

Stap Run P Ensoble auto swisching
(Demo with WeMIPS)

MIPS Commands

- Registers: locations for storing information that can be quickly accessed.

MIPS Commands

- Registers: locations for storing information that can be quickly accessed. Names start with '\$': \$s0, \$s1, \$t0, \$t1, ...

MIPS Commands

- Registers: locations for storing information that can be quickly accessed. Names start with '\$': \$s0, \$s1, \$t0, \$t1, ...
- \mathbf{R} Instructions: Commands that use data in the registers:

MIPS Commands

- Registers: locations for storing information that can be quickly accessed. Names start with '\$': \$s0, \$s1, \$t0, \$t1, ...
- \mathbf{R} Instructions: Commands that use data in the registers: add \$s1, \$s2, \$s3

MIPS Commands

- Registers: locations for storing information that can be quickly accessed. Names start with '\$': \$s0, \$s1, \$t0, \$t1,...
- R Instructions: Commands that use data in the registers: add \$s1, \$s2, \$s3 (Basic form: OP rd, rs, rt)
- I Instructions: instructions that also use intermediate values.

MIPS Commands

- Registers: locations for storing information that can be quickly accessed. Names start with '\$': \$s0, \$s1, \$t0, \$t1,...
- R Instructions: Commands that use data in the registers: add \$s1, \$s2, \$s3 (Basic form: OP rd, rs, rt)
- I Instructions: instructions that also use intermediate values. addi \$s1, \$s2, 100

MIPS Commands

- Registers: locations for storing information that can be quickly accessed. Names start with '\$': \$s0, \$s1, \$t0, \$t1,...
- R Instructions: Commands that use data in the registers: add \$s1, \$s2, \$s3 (Basic form: OP rd, rs, rt)
- I Instructions: instructions that also use intermediate values. addi \$s1, \$s2, 100 (Basic form: OP rd, rs, imm)
- J Instructions: instructions that jump to another memory location.

MIPS Commands

- Registers: locations for storing information that can be quickly accessed. Names start with '\$': \$s0, \$s1, \$t0, \$t1,...
- R Instructions: Commands that use data in the registers: add \$s1, \$s2, \$s3 (Basic form: OP rd, rs, rt)
- I Instructions: instructions that also use intermediate values. addi \$s1, \$s2, 100 (Basic form: OP rd, rs, imm)
- J Instructions: instructions that jump to another memory location. j done

MIPS Commands

- Registers: locations for storing information that can be quickly accessed. Names start with '\$': \$s0, \$s1, \$t0, \$t1,...
- R Instructions: Commands that use data in the registers: add \$s1, \$s2, \$s3 (Basic form: OP rd, rs, rt)
- I Instructions: instructions that also use intermediate values. addi \$s1, \$s2, 100 (Basic form: OP rd, rs, imm)
- J Instructions: instructions that jump to another memory location. j done
(Basic form: OP label)

Challenge:

Write a program that prints out the alphabet: a b c d ... x y z

WeMIPS

User Gudel Unt Testa | Docs

(Demo with WeMIPS)

Today's Topics

- Design Patterns: Searching
- Python Recap
- Machine Language
- Machine Language: Jumps \& Loops
- Binary \& Hex Arithmetic

Loops \& Jumps in Machine Language

- Instead of built-in looping structures like for and while, you create your own loops by "jumping" to the location in the program.

Loops \& Jumps in Machine Language

- Instead of built-in looping structures like for and while, you create your own loops by "jumping" to the location in the program.
- Can indicate locations by writing labels at the beginning of a line.

Loops \& Jumps in Machine Language

- Instead of built-in looping structures like for and while, you create your own loops by "jumping" to the location in the program.
- Can indicate locations by writing labels at the beginning of a line.
- Then give a command to jump to that location.

Loops \& Jumps in Machine Language

- Instead of built-in looping structures like for and while, you create your own loops by "jumping" to the location in the program.
- Can indicate locations by writing labels at the beginning of a line.
- Then give a command to jump to that location.
- Different kinds of jumps:

Loops \& Jumps in Machine Language

- Instead of built-in looping structures like for and while, you create your own loops by "jumping" to the location in the program.
- Can indicate locations by writing labels at the beginning of a line.
- Then give a command to jump to that location.
- Different kinds of jumps:
- Unconditional: j Done will jump to the address with label Done.

Loops \& Jumps in Machine Language

- Instead of built-in looping structures like for and while, you create your own loops by "jumping" to the location in the program.
- Can indicate locations by writing labels at the beginning of a line.
- Then give a command to jump to that location.
- Different kinds of jumps:
- Unconditional: j Done will jump to the address with label Done.
- Branch if Equal: beq \$s0 \$s1 DoAgain will jump to the address with label DoAgain if the registers $\$ \mathrm{~s} 0$ and $\$ \mathrm{~s} 1$ contain the same value.

Loops \& Jumps in Machine Language

- Instead of built-in looping structures like for and while, you create your own loops by "jumping" to the location in the program.
- Can indicate locations by writing labels at the beginning of a line.
- Then give a command to jump to that location.
- Different kinds of jumps:
- Unconditional: j Done will jump to the address with label Done.
- Branch if Equal: beq \$s0 \$s1 DoAgain will jump to the address with label DoAgain if the registers $\$ \mathrm{~s} 0$ and $\$ \mathrm{~s} 1$ contain the same value.
- See reading for more variations.

Jump Demo

Show/Hide Demos
User Guide | Unit Tests | Docs

```
ADDI $sp, $sp, -27
ADDI $s3, $zero, 1
ADDI $t0, $zero, }9
ADDI $s2, $zero, 26
SETUP: SB $t0, O($sp)
ADDI $sp, $sp, 1
ADDI $sp,$sp, 1
SUB $s2, $s2, $s3
ADDI $t0, $t0, 1
O BEQ $s2, $zero, DONE
BEQ $S2
J SETUP
DONE: ADDI $t0, $zero,
SB $to, 0($sp)
ADDI $sp, $sp, -26
15 ADDI $v0, $zero, 4
16 ADDI $aO, $sp, 0
17 syscall
```

```
# Set up stack
```


Set up stack

 # Store 1 in a register
 # Store 1 in a register
    ```
# Set $t0 at 97 (a)
```


Set \$t0 at 97 (a)

Use to test when you reach }2

Use to test when you reach }2

Next letter in \$t0

Decrease the counter by 1

Decrease the counter by 1

Increment the letter

Increment the letter

Jump to done if \$s2== 0

Else, jump back to SETUP

Else, jump back to SETUP

Null' (0) to terminate string

Null' (0) to terminate string

Add null to stack

Add null to stack

Set up stack to print

Set up stack to print

4 is for print string

4 is for print string

Set \$a0 to stack pointer

Set \$a0 to stack pointer

Print to the log

```
# Print to the log
```

Step Run Enable auto switching
S T A V Stack Log

Clear Log

Emulation complete, returning to line 1

abcdefghijklmnopqrstuvwxyz

(Demo with WeMIPS)

Today's Topics

- Design Patterns: Searching
- Python Recap
- Machine Language
- Machine Language: Jumps \& Loops
- Binary \& Hex Arithmetic

Hexadecimal to Decimal: Converting Between Bases

(from i-programmer.info)

- From hexadecimal to decimal (assuming two-digit numbers):
- Convert first digit to decimal and multiple by 16.

Hexadecimal to Decimal: Converting Between Bases

(from i-programmer.info)

- From hexadecimal to decimal (assuming two-digit numbers):
- Convert first digit to decimal and multiple by 16.
- Convert second digit to decimal and add to total.

Hexadecimal to Decimal: Converting Between Bases

(from i-programmer.info)

- From hexadecimal to decimal (assuming two-digit numbers):
- Convert first digit to decimal and multiple by 16.
- Convert second digit to decimal and add to total.
- Example: what is 2 A as a decimal number?

Hexadecimal to Decimal: Converting Between Bases

(from i-programmer.info)

- From hexadecimal to decimal (assuming two-digit numbers):
- Convert first digit to decimal and multiple by 16.
- Convert second digit to decimal and add to total.
- Example: what is 2 A as a decimal number?

2 in decimal is 2.

Hexadecimal to Decimal: Converting Between Bases

(from i-programmer.info)

- From hexadecimal to decimal (assuming two-digit numbers):
- Convert first digit to decimal and multiple by 16.
- Convert second digit to decimal and add to total.
- Example: what is 2 A as a decimal number?

2 in decimal is $2.2 * 16$ is 32 .

Hexadecimal to Decimal: Converting Between Bases

(from i-programmer.info)

- From hexadecimal to decimal (assuming two-digit numbers):
- Convert first digit to decimal and multiple by 16.
- Convert second digit to decimal and add to total.
- Example: what is 2 A as a decimal number?

```
2 in decimal is 2. 2*16 is 32.
A in decimal digits is 10.
```


Hexadecimal to Decimal: Converting Between Bases

(from i-programmer.info)

- From hexadecimal to decimal (assuming two-digit numbers):
- Convert first digit to decimal and multiple by 16.
- Convert second digit to decimal and add to total.
- Example: what is 2 A as a decimal number?

```
2 in decimal is 2. 2*16 is 32.
A in decimal digits is 10.
32+10 is 42.
```


Hexadecimal to Decimal: Converting Between Bases

(from i-programmer.info)

- From hexadecimal to decimal (assuming two-digit numbers):
- Convert first digit to decimal and multiple by 16.
- Convert second digit to decimal and add to total.
- Example: what is 2 A as a decimal number?

2 in decimal is $2.2 * 16$ is 32.
A in decimal digits is 10.
$32+10$ is 42 .
Answer is 42.

- Example: what is 99 as a decimal number?

Hexadecimal to Decimal: Converting Between Bases

(from i-programmer.info)

- From hexadecimal to decimal (assuming two-digit numbers):
- Convert first digit to decimal and multiple by 16.
- Convert second digit to decimal and add to total.
- Example: what is 2 A as a decimal number?

2 in decimal is $2.2 * 16$ is 32.
A in decimal digits is 10.
$32+10$ is 42 .
Answer is 42.

- Example: what is 99 as a decimal number?

9 in decimal is 9.

Hexadecimal to Decimal: Converting Between Bases

(from i-programmer.info)

- From hexadecimal to decimal (assuming two-digit numbers):
- Convert first digit to decimal and multiple by 16.
- Convert second digit to decimal and add to total.
- Example: what is 2 A as a decimal number?

2 in decimal is $2.2 * 16$ is 32.
A in decimal digits is 10.
$32+10$ is 42 .
Answer is 42.

- Example: what is 99 as a decimal number?

9 in decimal is $9.9 * 16$ is 144.

Hexadecimal to Decimal: Converting Between Bases

(from i-programmer.info)

- From hexadecimal to decimal (assuming two-digit numbers):
- Convert first digit to decimal and multiple by 16.
- Convert second digit to decimal and add to total.
- Example: what is 2 A as a decimal number?

2 in decimal is $2.2 * 16$ is 32.
A in decimal digits is 10.
$32+10$ is 42 .
Answer is 42.

- Example: what is 99 as a decimal number?

9 in decimal is $9.9 * 16$ is 144.
9 in decimal digits is 9

Hexadecimal to Decimal: Converting Between Bases

(from i-programmer.info)

- From hexadecimal to decimal (assuming two-digit numbers):
- Convert first digit to decimal and multiple by 16.
- Convert second digit to decimal and add to total.
- Example: what is 2 A as a decimal number?

2 in decimal is $2.2 * 16$ is 32.
A in decimal digits is 10.
$32+10$ is 42 .
Answer is 42.

- Example: what is 99 as a decimal number?

```
9 in decimal is 9. 9*16 is 144.
```

9 in decimal digits is 9
$144+9$ is 153.

Hexadecimal to Decimal: Converting Between Bases

(from i-programmer.info)

- From hexadecimal to decimal (assuming two-digit numbers):
- Convert first digit to decimal and multiple by 16.
- Convert second digit to decimal and add to total.
- Example: what is 2 A as a decimal number?

2 in decimal is $2.2 * 16$ is 32.
A in decimal digits is 10.
$32+10$ is 42 .
Answer is 42.

- Example: what is 99 as a decimal number?

9 in decimal is $9.9 * 16$ is 144.
9 in decimal digits is 9
$144+9$ is 153.
Answer is 153.

Decimal to Binary: Converting Between Bases

ㅁㅁㅁㅁ

Example: $1 \times 16+1 \times 8+1 \times 1=16+8+1=25$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.

Decimal to Binary: Converting Between Bases

ㅁㅁㅁ

Example: $1 \times 16+1 \times 8+1 \times 1=16+8+1=25$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.

Decimal to Binary: Converting Between Bases

回

Example: $1 \times 16+1 \times 8+1 \times 1=16+8+1=25$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.

Decimal to Binary: Converting Between Bases

回 \square 日

Example: $1 \times 16+1 \times 8+1 \times 1=16+8+1=25$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.
- Divide remainder by $16\left(=2^{4}\right)$. Quotient is the next digit.

Decimal to Binary: Converting Between Bases

ㅁㅁㅁㅁ

Example: $1 \times 16+1 \times 8+1 \times 1=16+8+1=25$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.
- Divide remainder by $16\left(=2^{4}\right)$. Quotient is the next digit.
- Divide remainder by $8\left(=2^{3}\right)$. Quotient is the next digit.

Decimal to Binary: Converting Between Bases

Example: $1 \times 16+1 \times 8+1 \times 1=16+8+1=25$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.
- Divide remainder by $16\left(=2^{4}\right)$. Quotient is the next digit.
- Divide remainder by $8\left(=2^{3}\right)$. Quotient is the next digit.
- Divide remainder by $4\left(=2^{2}\right)$. Quotient is the next digit.

Decimal to Binary: Converting Between Bases

ㅁㅁㅁㅁ

Example: $1 \times 16+1 \times 8+1 \times 1=16+8+1=25$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.
- Divide remainder by $16\left(=2^{4}\right)$. Quotient is the next digit.
- Divide remainder by $8\left(=2^{3}\right)$. Quotient is the next digit.
- Divide remainder by $4\left(=2^{2}\right)$. Quotient is the next digit.
- Divide remainder by $2\left(=2^{1}\right)$. Quotient is the next digit.

Decimal to Binary: Converting Between Bases

ㅁㅁㅁㅁ

Example: $1 \times 16+1 \times 8+1 \times 1=16+8+1=25$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.
- Divide remainder by $16\left(=2^{4}\right)$. Quotient is the next digit.
- Divide remainder by $8\left(=2^{3}\right)$. Quotient is the next digit.
- Divide remainder by $4\left(=2^{2}\right)$. Quotient is the next digit.
- Divide remainder by $2\left(=2^{1}\right)$. Quotient is the next digit.
- The last remainder is the last digit.

Decimal to Binary: Converting Between Bases

ㅁㅁㅁㅁ

Example: $1 \times 16+1 \times 8+1 \times 1=16+8+1=\mathbf{2 5}$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.
- Divide remainder by $16\left(=2^{4}\right)$. Quotient is the next digit.
- Divide remainder by $8\left(=2^{3}\right)$. Quotient is the next digit.
- Divide remainder by $4\left(=2^{2}\right)$. Quotient is the next digit.
- Divide remainder by $2\left(=2^{1}\right)$. Quotient is the next digit.
- The last remainder is the last digit.
- Example: what is 130 in binary notation?

Decimal to Binary: Converting Between Bases

Example: $1 \times 16+1 \times 8+1 \times 1=16+8+1=\mathbf{2 5}$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.
- Divide remainder by $16\left(=2^{4}\right)$. Quotient is the next digit.
- Divide remainder by $8\left(=2^{3}\right)$. Quotient is the next digit.
- Divide remainder by $4\left(=2^{2}\right)$. Quotient is the next digit.
- Divide remainder by $2\left(=2^{1}\right)$. Quotient is the next digit.
- The last remainder is the last digit.
- Example: what is 130 in binary notation? $130 / 128$ is 1 rem 2.

Decimal to Binary: Converting Between Bases

Example: $1 \times 16+1 \times 8+1 \times 1=16+8+1=\mathbf{2 5}$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.
- Divide remainder by $16\left(=2^{4}\right)$. Quotient is the next digit.
- Divide remainder by $8\left(=2^{3}\right)$. Quotient is the next digit.
- Divide remainder by $4\left(=2^{2}\right)$. Quotient is the next digit.
- Divide remainder by $2\left(=2^{1}\right)$. Quotient is the next digit.
- The last remainder is the last digit.
- Example: what is 130 in binary notation?

$$
130 / 128 \text { is } 1 \text { rem 2. First digit is } 1 \text { : }
$$

Decimal to Binary: Converting Between Bases

ㅁㅁㅁㅁ

Example: $1 \times 16+1 \times 8+1 \times 1=16+8+1=\mathbf{2 5}$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.
- Divide remainder by $16\left(=2^{4}\right)$. Quotient is the next digit.
- Divide remainder by $8\left(=2^{3}\right)$. Quotient is the next digit.
- Divide remainder by $4\left(=2^{2}\right)$. Quotient is the next digit.
- Divide remainder by $2\left(=2^{1}\right)$. Quotient is the next digit.
- The last remainder is the last digit.
- Example: what is 130 in binary notation?

```
130/128 is 1 rem 2. First digit is 1: 1...
2/64 is 0 rem 2.
```


Decimal to Binary: Converting Between Bases

Example: $1 \times 16+1 \times 8+1 \times 1=16+8+1=\mathbf{2 5}$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.
- Divide remainder by $16\left(=2^{4}\right)$. Quotient is the next digit.
- Divide remainder by $8\left(=2^{3}\right)$. Quotient is the next digit.
- Divide remainder by $4\left(=2^{2}\right)$. Quotient is the next digit.
- Divide remainder by $2\left(=2^{1}\right)$. Quotient is the next digit.
- The last remainder is the last digit.
- Example: what is 130 in binary notation?

```
130/128 is 1 rem 2. First digit is 1: 1...
2/64 is 0 rem 2. Next digit is 0:
```


Decimal to Binary: Converting Between Bases

Example: $1 \times 16+1 \times 8+1 \times 1=16+8+1=\mathbf{2 5}$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.
- Divide remainder by $16\left(=2^{4}\right)$. Quotient is the next digit.
- Divide remainder by $8\left(=2^{3}\right)$. Quotient is the next digit.
- Divide remainder by $4\left(=2^{2}\right)$. Quotient is the next digit.
- Divide remainder by $2\left(=2^{1}\right)$. Quotient is the next digit.
- The last remainder is the last digit.
- Example: what is 130 in binary notation?

```
130/128 is 1 rem 2. First digit is 1: 1...
2/64 is 0 rem 2. Next digit is 0: 10..
```


Decimal to Binary: Converting Between Bases

ㅁㅁㅁㅁ

Example: $1 \times 16+1 \times 8+1 \times 1=16+8+1=25$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.
- Divide remainder by $16\left(=2^{4}\right)$. Quotient is the next digit.
- Divide remainder by $8\left(=2^{3}\right)$. Quotient is the next digit.
- Divide remainder by $4\left(=2^{2}\right)$. Quotient is the next digit.
- Divide remainder by $2\left(=2^{1}\right)$. Quotient is the next digit.
- The last remainder is the last digit.
- Example: what is 130 in binary notation?

```
130/128 is 1 rem 2. First digit is 1: 1...
2/64 is 0 rem 2. Next digit is 0: 10.
2/32 is 0 rem 2.
```


Decimal to Binary: Converting Between Bases

Example: $1 \times 16+1 \times 8+1 \times 1=16+8+1=\mathbf{2 5}$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.
- Divide remainder by $16\left(=2^{4}\right)$. Quotient is the next digit.
- Divide remainder by $8\left(=2^{3}\right)$. Quotient is the next digit.
- Divide remainder by $4\left(=2^{2}\right)$. Quotient is the next digit.
- Divide remainder by $2\left(=2^{1}\right)$. Quotient is the next digit.
- The last remainder is the last digit.
- Example: what is 130 in binary notation?

```
130/128 is 1 rem 2. First digit is 1: 1...
2/64 is 0 rem 2. Next digit is 0: 10.
2/32 is 0 rem 2. Next digit is 0:
```


Decimal to Binary: Converting Between Bases

Example: $1 \times 16+1 \times 8+1 \times 1=16+8+1=\mathbf{2 5}$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.
- Divide remainder by $16\left(=2^{4}\right)$. Quotient is the next digit.
- Divide remainder by $8\left(=2^{3}\right)$. Quotient is the next digit.
- Divide remainder by $4\left(=2^{2}\right)$. Quotient is the next digit.
- Divide remainder by $2\left(=2^{1}\right)$. Quotient is the next digit.
- The last remainder is the last digit.
- Example: what is 130 in binary notation?

```
130/128 is 1 rem 2. First digit is 1: 1...
2/64 is 0 rem 2. Next digit is 0: 10.
2/32 is 0 rem 2. Next digit is 0: 100.
```


Decimal to Binary: Converting Between Bases

Example: $1 \times 16+1 \times 8+1 \times 1=16+8+1=\mathbf{2 5}$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.
- Divide remainder by $16\left(=2^{4}\right)$. Quotient is the next digit.
- Divide remainder by $8\left(=2^{3}\right)$. Quotient is the next digit.
- Divide remainder by $4\left(=2^{2}\right)$. Quotient is the next digit.
- Divide remainder by $2\left(=2^{1}\right)$. Quotient is the next digit.
- The last remainder is the last digit.
- Example: what is 130 in binary notation?

```
130/128 is 1 rem 2. First digit is 1: 1...
2/64 is 0 rem 2. Next digit is 0: 10.
2/32 is 0 rem 2. Next digit is 0: 100...
2/16 is 0 rem 2.
```


Decimal to Binary: Converting Between Bases

Example: $1 \times 16+1 \times 8+1 \times 1=16+8+1=25$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.
- Divide remainder by $16\left(=2^{4}\right)$. Quotient is the next digit.
- Divide remainder by $8\left(=2^{3}\right)$. Quotient is the next digit.
- Divide remainder by $4\left(=2^{2}\right)$. Quotient is the next digit.
- Divide remainder by $2\left(=2^{1}\right)$. Quotient is the next digit.
- The last remainder is the last digit.
- Example: what is 130 in binary notation?

```
130/128 is 1 rem 2. First digit is 1: 1...
2/64 is 0 rem 2. Next digit is 0: 10.
2/32 is 0 rem 2. Next digit is 0: 100..
2/16 is 0 rem 2. Next digit is 0:
```


Decimal to Binary: Converting Between Bases

Example: $1 \times 16+1 \times 8+1 \times 1=16+8+1=25$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.
- Divide remainder by $16\left(=2^{4}\right)$. Quotient is the next digit.
- Divide remainder by $8\left(=2^{3}\right)$. Quotient is the next digit.
- Divide remainder by $4\left(=2^{2}\right)$. Quotient is the next digit.
- Divide remainder by $2\left(=2^{1}\right)$. Quotient is the next digit.
- The last remainder is the last digit.
- Example: what is 130 in binary notation?

```
130/128 is 1 rem 2. First digit is 1: 1...
2/64 is 0 rem 2. Next digit is 0: 10.
2/32 is 0 rem 2. Next digit is 0: }10
2/16 is 0 rem 2. Next digit is 0: }100
```


Decimal to Binary: Converting Between Bases

Example: $1 \times 16+1 \times 8+1 \times 1=16+8+1=25$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.
- Divide remainder by $16\left(=2^{4}\right)$. Quotient is the next digit.
- Divide remainder by $8\left(=2^{3}\right)$. Quotient is the next digit.
- Divide remainder by $4\left(=2^{2}\right)$. Quotient is the next digit.
- Divide remainder by $2\left(=2^{1}\right)$. Quotient is the next digit.
- The last remainder is the last digit.
- Example: what is 130 in binary notation?

```
130/128 is 1 rem 2. First digit is 1: 1...
2/64 is 0 rem 2. Next digit is 0: 10.
2/32 is 0 rem 2. Next digit is 0: }10
2/16 is 0 rem 2. Next digit is 0: 1000
2/8 is 0 rem 2.
```


Decimal to Binary: Converting Between Bases

Example: $1 \times 16+1 \times 8+1 \times 1=16+8+1=25$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.
- Divide remainder by $16\left(=2^{4}\right)$. Quotient is the next digit.
- Divide remainder by $8\left(=2^{3}\right)$. Quotient is the next digit.
- Divide remainder by $4\left(=2^{2}\right)$. Quotient is the next digit.
- Divide remainder by $2\left(=2^{1}\right)$. Quotient is the next digit.
- The last remainder is the last digit.
- Example: what is 130 in binary notation?

```
130/128 is 1 rem 2. First digit is 1: 1...
2/64 is 0 rem 2. Next digit is 0: 10.
2/32 is 0 rem 2. Next digit is 0: 100.
2/16 is 0 rem 2. Next digit is 0: 1000
2/8 is 0 rem 2. Next digit is 0:
```


Decimal to Binary: Converting Between Bases

Example: $1 \times 16+1 \times 8+1 \times 1=16+8+1=25$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.
- Divide remainder by $16\left(=2^{4}\right)$. Quotient is the next digit.
- Divide remainder by $8\left(=2^{3}\right)$. Quotient is the next digit.
- Divide remainder by $4\left(=2^{2}\right)$. Quotient is the next digit.
- Divide remainder by $2\left(=2^{1}\right)$. Quotient is the next digit.
- The last remainder is the last digit.
- Example: what is 130 in binary notation?

```
130/128 is 1 rem 2. First digit is 1: 1...
2/64 is 0 rem 2. Next digit is 0: 10.
2/32 is 0 rem 2. Next digit is 0: }10
2/16 is 0 rem 2. Next digit is 0: }100
2/8 is 0 rem 2. Next digit is 0: }1000
```


Decimal to Binary: Converting Between Bases

Example: $1 \times 16+1 \times 8+1 \times 1=16+8+1=25$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.
- Divide remainder by $16\left(=2^{4}\right)$. Quotient is the next digit.
- Divide remainder by $8\left(=2^{3}\right)$. Quotient is the next digit.
- Divide remainder by $4\left(=2^{2}\right)$. Quotient is the next digit.
- Divide remainder by $2\left(=2^{1}\right)$. Quotient is the next digit.
- The last remainder is the last digit.
- Example: what is 130 in binary notation?

```
130/128 is 1 rem 2. First digit is 1: 1...
2/64 is 0 rem 2. Next digit is 0: 10.
2/32 is 0 rem 2. Next digit is 0: 100.
2/16 is 0 rem 2. Next digit is 0: 1000
2/8 is 0 rem 2. Next digit is 0: }1000
2/4 is 0 remainder 2.
```


Decimal to Binary: Converting Between Bases

Example: $1 \times 16+1 \times 8+1 \times 1=16+8+1=25$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.
- Divide remainder by $16\left(=2^{4}\right)$. Quotient is the next digit.
- Divide remainder by $8\left(=2^{3}\right)$. Quotient is the next digit.
- Divide remainder by $4\left(=2^{2}\right)$. Quotient is the next digit.
- Divide remainder by $2\left(=2^{1}\right)$. Quotient is the next digit.
- The last remainder is the last digit.
- Example: what is 130 in binary notation?

```
130/128 is 1 rem 2. First digit is 1: 1...
2/64 is 0 rem 2. Next digit is 0: 10.
2/32 is 0 rem 2. Next digit is 0: 100.
2/16 is 0 rem 2. Next digit is 0: 1000
2/8 is 0 rem 2. Next digit is 0: }1000
2/4 is 0 remainder 2. Next digit is 0:
```


Decimal to Binary: Converting Between Bases

Example: $\mathbf{1 \times 1 6 + 1 \times 8 + 1 \times 1 = 1 6 + 8 + 1 = 2 5}$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.
- Divide remainder by $16\left(=2^{4}\right)$. Quotient is the next digit.
- Divide remainder by $8\left(=2^{3}\right)$. Quotient is the next digit.
- Divide remainder by $4\left(=2^{2}\right)$. Quotient is the next digit.
- Divide remainder by $2\left(=2^{1}\right)$. Quotient is the next digit.
- The last remainder is the last digit.
- Example: what is 130 in binary notation?

```
130/128 is 1 rem 2. First digit is 1: 1...
2/64 is 0 rem 2. Next digit is 0: 10.
2/32 is 0 rem 2. Next digit is 0: 100.
2/16 is 0 rem 2. Next digit is 0: 1000.
2/8 is 0 rem 2. Next digit is 0: }1000
2/4 is 0 remainder 2. Next digit is 0: 100000.
```


Decimal to Binary: Converting Between Bases

Example: $\mathbf{1 \times 1 6 + 1 \times 8 + 1 \times 1 = 1 6 + 8 + 1 = 2 5}$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.
- Divide remainder by $16\left(=2^{4}\right)$. Quotient is the next digit.
- Divide remainder by $8\left(=2^{3}\right)$. Quotient is the next digit.
- Divide remainder by $4\left(=2^{2}\right)$. Quotient is the next digit.
- Divide remainder by $2\left(=2^{1}\right)$. Quotient is the next digit.
- The last remainder is the last digit.
- Example: what is 130 in binary notation?

```
130/128 is 1 rem 2. First digit is 1: 1...
2/64 is 0 rem 2. Next digit is 0: 10.
2/32 is 0 rem 2. Next digit is 0: 100.
2/16 is 0 rem 2. Next digit is 0: 1000.
2/8 is 0 rem 2. Next digit is 0: }1000
2/4 is 0 remainder 2. Next digit is 0: 100000...
2/2 is 1 rem 0.
```


Decimal to Binary: Converting Between Bases

ㅁㅁㅁ

Example: $\mathbf{1 \times 1 6 + 1 \times 8 + 1 \times 1 = 1 6 + 8 + 1 = 2 5}$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.
- Divide remainder by $16\left(=2^{4}\right)$. Quotient is the next digit.
- Divide remainder by $8\left(=2^{3}\right)$. Quotient is the next digit.
- Divide remainder by $4\left(=2^{2}\right)$. Quotient is the next digit.
- Divide remainder by $2\left(=2^{1}\right)$. Quotient is the next digit.
- The last remainder is the last digit.
- Example: what is 130 in binary notation?

```
130/128 is 1 rem 2. First digit is 1: 1...
2/64 is 0 rem 2. Next digit is 0: 10.
2/32 is 0 rem 2. Next digit is 0: 100.
2/16 is 0 rem 2. Next digit is 0: 1000.
2/8 is 0 rem 2. Next digit is 0: }1000
2/4 is 0 remainder 2. Next digit is 0: 100000.
2/2 is 1 rem 0. Next digit is 1:
```


Decimal to Binary: Converting Between Bases

ㅁㅁㅁ

Example: $\mathbf{1 \times 1 6 + 1 \times 8 + 1 \times 1 = 1 6 + 8 + 1 = 2 5}$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.
- Divide remainder by $16\left(=2^{4}\right)$. Quotient is the next digit.
- Divide remainder by $8\left(=2^{3}\right)$. Quotient is the next digit.
- Divide remainder by $4\left(=2^{2}\right)$. Quotient is the next digit.
- Divide remainder by $2\left(=2^{1}\right)$. Quotient is the next digit.
- The last remainder is the last digit.
- Example: what is 130 in binary notation?

```
130/128 is 1 rem 2. First digit is 1: 1...
2/64 is 0 rem 2. Next digit is 0: 10.
2/32 is 0 rem 2. Next digit is 0: 100.
2/16 is 0 rem 2. Next digit is 0: 1000.
2/8 is 0 rem 2. Next digit is 0: 10000.
2/4 is 0 remainder 2. Next digit is 0: 100000...
2/2 is 1 rem 0. Next digit is 1: 1000001.
```


Decimal to Binary: Converting Between Bases

ㅁㅁㅁㅁ

Example: $1 \times 16+1 \times 8+1 \times 1=16+8+1=25$

- From decimal to binary:
- Divide by $128\left(=2^{7}\right)$. Quotient is the first digit.
- Divide remainder by $64\left(=2^{6}\right)$. Quotient is the next digit.
- Divide remainder by $32\left(=2^{5}\right)$. Quotient is the next digit.
- Divide remainder by $16\left(=2^{4}\right)$. Quotient is the next digit.
- Divide remainder by $8\left(=2^{3}\right)$. Quotient is the next digit.
- Divide remainder by $4\left(=2^{2}\right)$. Quotient is the next digit.
- Divide remainder by $2\left(=2^{1}\right)$. Quotient is the next digit.
- The last remainder is the last digit.
- Example: what is 130 in binary notation?

```
130/128 is 1 rem 2. First digit is 1: 1...
2/64 is 0 rem 2. Next digit is 0: 10.
2/32 is 0 rem 2. Next digit is 0: 100.
2/16 is 0 rem 2. Next digit is 0: 1000.
2/8 is 0 rem 2. Next digit is 0: }1000
2/4 is 0 remainder 2. Next digit is 0: 100000...
2/2 is 1 rem 0. Next digit is 1: 1000001.
Adding the last remainder:

\section*{Decimal to Binary: Converting Between Bases}


\section*{ㅁㅁㅁㅁ}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- From decimal to binary:
- Divide by \(128\left(=2^{7}\right)\). Quotient is the first digit.
- Divide remainder by \(64\left(=2^{6}\right)\). Quotient is the next digit.
- Divide remainder by \(32\left(=2^{5}\right)\). Quotient is the next digit.
- Divide remainder by \(16\left(=2^{4}\right)\). Quotient is the next digit.
- Divide remainder by \(8\left(=2^{3}\right)\). Quotient is the next digit.
- Divide remainder by \(4\left(=2^{2}\right)\). Quotient is the next digit.
- Divide remainder by \(2\left(=2^{1}\right)\). Quotient is the next digit.
- The last remainder is the last digit.
- Example: what is 130 in binary notation?
```

130/128 is 1 rem 2. First digit is 1: 1...
2/64 is 0 rem 2. Next digit is 0: 10.
2/32 is 0 rem 2. Next digit is 0: 100.
2/16 is 0 rem 2. Next digit is 0: 1000..
2/8 is 0 rem 2. Next digit is 0: 10000.
2/4 is 0 remainder 2. Next digit is 0: 100000...
2/2 is 1 rem 0. Next digit is 1: 1000001.
Adding the last remainder: }1000001

```

\section*{Decimal to Binary: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: what is 99 in binary notation?

\section*{Decimal to Binary: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: what is 99 in binary notation?
\[
99 / 128 \text { is } 0 \text { rem } 99
\]

\section*{Decimal to Binary: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: what is 99 in binary notation?
\[
99 / 128 \text { is } 0 \text { rem 99. First digit is } 0 \text { : }
\]

\section*{Decimal to Binary: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: what is 99 in binary notation?
\[
\begin{aligned}
& 99 / 128 \text { is } 0 \text { rem 99. First digit is } 0: 0 \ldots \\
& 99 / 64 \text { is } 1 \text { rem } 35 .
\end{aligned}
\]

\section*{Decimal to Binary: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: what is 99 in binary notation?
\[
\begin{aligned}
& 99 / 128 \text { is } 0 \text { rem 99. First digit is } 0: 0 \ldots \\
& 99 / 64 \text { is } 1 \text { rem 35. Next digit is } 1:
\end{aligned}
\]

\section*{Decimal to Binary: Converting Between Bases}

- Example: what is 99 in binary notation?
\[
\begin{array}{ll}
99 / 128 \text { is } 0 \text { rem 99. First digit is } 0: & 0 \ldots \\
99 / 64 \text { is } 1 \text { rem 35. Next digit is } 1: & 01 \ldots .
\end{array}
\]

\section*{Decimal to Binary: Converting Between Bases}

- Example: what is 99 in binary notation?
\[
\begin{array}{ll}
99 / 128 \text { is } 0 \text { rem 99. First digit is } 0: & 0 \ldots \\
99 / 64 \text { is } 1 \text { rem } 35 . \text { Next digit is } 1: & 01 \ldots \\
35 / 32 \text { is } 1 \text { rem } 3 .
\end{array}
\]

\section*{Decimal to Binary: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: what is 99 in binary notation?
\[
\begin{array}{lll}
99 / 128 \text { is } 0 \text { rem 99. First digit is } 0: & 0 \ldots \\
99 / 64 \text { is } 1 \text { rem } 35 . \text { Next digit is } 1: & 01 \ldots \\
35 / 32 \text { is } 1 \text { rem 3. Next digit is } 1: &
\end{array}
\]

\section*{Decimal to Binary: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: what is 99 in binary notation?
\[
\begin{array}{lll}
99 / 128 \text { is } 0 \text { rem 99. First digit is } 0: & 0 \ldots \\
99 / 64 \text { is } 1 \text { rem 35. Next digit is } 1: & 01 \ldots \\
35 / 32 \text { is } 1 \text { rem 3. Next digit is 1: } & 011 \ldots
\end{array}
\]

\section*{Decimal to Binary: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: what is 99 in binary notation?
```

99/128 is 0 rem 99. First digit is 0:
0...
99/64 is 1 rem 35. Next digit is 1: 01...
35/32 is 1 rem 3. Next digit is 1: 011...
3/16 is 0 rem 3.

```

\section*{Decimal to Binary: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: what is 99 in binary notation?
\[
\begin{array}{lll}
99 / 128 \text { is } 0 \text { rem 99. First digit is } 0: & 0 \ldots \\
99 / 64 \text { is } 1 \text { rem 35. Next digit is } 1: & 01 \ldots \\
35 / 32 \text { is } 1 \text { rem 3. Next digit is } 1: & 011 \ldots \\
3 / 16 \text { is } 0 \text { rem 3. Next digit is } 0: &
\end{array}
\]

\section*{Decimal to Binary: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: what is 99 in binary notation?
```

99/128 is 0 rem 99. First digit is 0:
0...
99/64 is 1 rem 35. Next digit is 1: 01...
35/32 is 1 rem 3. Next digit is 1: 011...
3/16 is 0 rem 3. Next digit is 0: 0110...

```

\section*{Decimal to Binary: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: what is 99 in binary notation?
\begin{tabular}{lll}
\(99 / 128\) is 0 rem 99. First digit is \(0:\) & \(0 \ldots\) \\
\(99 / 64\) is 1 rem 35. Next digit is \(1:\) & \(01 \ldots\) \\
\(35 / 32\) is 1 rem 3. Next digit is 1: & \(011 \ldots\) \\
\(3 / 16\) is 0 rem 3. Next digit is \(0:\) & \(0110 \ldots\)
\end{tabular}
\(3 / 8\) is 0 rem 3 .

\section*{Decimal to Binary: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: what is 99 in binary notation?
\begin{tabular}{lll}
\(99 / 128\) is 0 rem 99. First digit is \(0:\) & \(0 \ldots\) \\
\(99 / 64\) is 1 rem 35. Next digit is \(1:\) & \(01 \ldots\) \\
\(35 / 32\) is 1 rem 3. Next digit is 1: & \(011 \ldots\) \\
\(3 / 16\) is 0 rem 3. Next digit is \(0:\) & \(0110 \ldots\)
\end{tabular}
\(3 / 8\) is 0 rem 3. Next digit is 0 :

\section*{Decimal to Binary: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: what is 99 in binary notation?
\begin{tabular}{ll}
\(99 / 128\) is 0 rem 99. First digit is \(0:\) & \(0 \ldots\) \\
\(99 / 64\) is 1 rem 35. Next digit is 1: & \(01 \ldots\) \\
\(35 / 32\) is 1 rem 3. Next digit is 1: & \(011 \ldots\) \\
\(3 / 16\) is 0 rem 3. Next digit is 0: & \(0110 \ldots\) \\
\(3 / 8\) is 0 rem 3. Next digit is 0: & \(01100 \ldots\)
\end{tabular}

\section*{Decimal to Binary: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: what is 99 in binary notation?
\begin{tabular}{ll}
\(99 / 128\) is 0 rem 99. First digit is \(0:\) & \(0 \ldots\) \\
\(99 / 64\) is 1 rem 35. Next digit is \(1:\) & \(01 \ldots\) \\
\(35 / 32\) is 1 rem 3. Next digit is 1: & \(011 \ldots\) \\
\(3 / 16\) is 0 rem 3. Next digit is 0: & \(0110 \ldots\) \\
\(3 / 8\) is 0 rem 3. Next digit is \(0:\) & \(01100 \ldots\) \\
\(3 / 4\) is 0 remainder 3. &
\end{tabular}

\section*{Decimal to Binary: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: what is 99 in binary notation?
\begin{tabular}{lll}
\(99 / 128\) is 0 rem 99. First digit is \(0:\) & \(0 \ldots\) \\
\(99 / 64\) is 1 rem 35. Next digit is 1: & \(01 \ldots\) \\
\(35 / 32\) is 1 rem 3. Next digit is 1: & \(011 \ldots\) \\
\(3 / 16\) is 0 rem 3. Next digit is 0: & \(0110 \ldots\) \\
\(3 / 8\) is 0 rem 3. Next digit is 0: & \(01100 \ldots\) \\
\(3 / 4\) is 0 remainder 3. Next digit is 0: &
\end{tabular}

\section*{Decimal to Binary: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: what is 99 in binary notation?
\begin{tabular}{lll}
\(99 / 128\) is 0 rem 99. First digit is \(0:\) & \(0 \ldots\) \\
\(99 / 64\) is 1 rem 35. Next digit is \(1:\) & \(01 \ldots\) \\
\(35 / 32\) is 1 rem 3. Next digit is \(1:\) & \(011 \ldots\) \\
\(3 / 16\) is 0 rem 3. Next digit is \(0:\) & \(0110 \ldots\) \\
\(3 / 8\) is 0 rem 3. Next digit is \(0:\) & \(01100 \ldots\) \\
\(3 / 4\) is 0 remainder 3. Next digit is \(0:\) & \(011000 \ldots\)
\end{tabular}

\section*{Decimal to Binary: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: what is 99 in binary notation?
```

99/128 is 0 rem 99. First digit is 0:
99/64 is 1 rem 35. Next digit is 1:
35/32 is 1 rem 3. Next digit is 1:
3/16 is 0 rem 3. Next digit is 0:
3/8 is 0 rem 3. Next digit is 0:
01100...
3/4 is 0 remainder 3. Next digit is 0: 011000...
3/2 is 1 rem 1.

```

\section*{Decimal to Binary: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: what is 99 in binary notation?
\begin{tabular}{ll}
\(99 / 128\) is 0 rem 99. First digit is \(0:\) & \(0 \ldots\) \\
\(99 / 64\) is 1 rem 35. Next digit is \(1:\) & \(01 \ldots\) \\
\(35 / 32\) is 1 rem 3. Next digit is \(1:\) & \(011 \ldots\) \\
\(3 / 16\) is 0 rem 3. Next digit is \(0:\) & \(0110 \ldots\) \\
\(3 / 8\) is 0 rem 3. Next digit is \(0:\) & \(01100 \ldots\) \\
\(3 / 4\) is 0 remainder 3. Next digit is \(0:\) & \(011000 \ldots\) \\
\(3 / 2\) is 1 rem 1. Next digit is \(1:\) &
\end{tabular}

\section*{Decimal to Binary: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: what is 99 in binary notation?
```

99/128 is 0 rem 99. First digit is 0:
0...
99/64 is 1 rem 35. Next digit is 1: 01...
35/32 is 1 rem 3. Next digit is 1: 011...
3/16 is 0 rem 3. Next digit is 0: 0110···.
3/8 is 0 rem 3. Next digit is 0: 01100.
3/4 is 0 remainder 3. Next digit is 0: 011000...
3/2 is 1 rem 1. Next digit is 1: 0110001...

```

\section*{Decimal to Binary: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: what is 99 in binary notation?
\begin{tabular}{ll}
\(99 / 128\) is 0 rem 99. First digit is \(0:\) & \(0 \ldots\) \\
\(99 / 64\) is 1 rem 35. Next digit is \(1:\) & \(01 \ldots\) \\
\(35 / 32\) is 1 rem 3. Next digit is \(1:\) & \(011 \ldots\) \\
\(3 / 16\) is 0 rem 3. Next digit is \(0:\) & \(0110 \ldots\) \\
\(3 / 8\) is 0 rem 3. Next digit is \(0:\) & \(01100 \ldots\) \\
\(3 / 4\) is 0 remainder 3. Next digit is \(0:\) & \(011000 \ldots\) \\
\(3 / 2\) is 1 rem 1. Next digit is 1: & \(0110001 \ldots\) \\
Adding the last remainder: & 01100011
\end{tabular}

\section*{Decimal to Binary: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: what is 99 in binary notation?
\begin{tabular}{ll}
\(99 / 128\) is 0 rem 99. First digit is \(0:\) & \(0 \ldots\) \\
\(99 / 64\) is 1 rem 35. Next digit is \(1:\) & \(01 \ldots\) \\
\(35 / 32\) is 1 rem 3. Next digit is \(1:\) & \(011 \ldots\) \\
\(3 / 16\) is 0 rem 3. Next digit is \(0:\) & \(0110 \ldots\) \\
\(3 / 8\) is 0 rem 3. Next digit is \(0:\) & \(01100 \ldots\) \\
\(3 / 4\) is 0 remainder 3. Next digit is \(0:\) & \(011000 \ldots\) \\
\(3 / 2\) is 1 rem 1. Next digit is 1: & \(0110001 \ldots\) \\
Adding the last remainder: & 01100011
\end{tabular}

Answer is 1100011.

\section*{Binary to Decimal: Converting Between Bases}



Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- From binary to decimal:
- Set sum = last digit.

\section*{Binary to Decimal: Converting Between Bases}



Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- From binary to decimal:
- Set sum \(=\) last digit.
- Multiply next digit by \(2=2^{1}\). Add to sum.

\section*{Binary to Decimal: Converting Between Bases}



Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- From binary to decimal:
- Set sum \(=\) last digit.
- Multiply next digit by \(2=2^{1}\). Add to sum.
- Multiply next digit by \(4=2^{2}\). Add to sum.

\section*{Binary to Decimal: Converting Between Bases}



Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- From binary to decimal:
- Set sum \(=\) last digit.
- Multiply next digit by \(2=2^{1}\). Add to sum.
- Multiply next digit by \(4=2^{2}\). Add to sum.
- Multiply next digit by \(8=2^{3}\). Add to sum.

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- From binary to decimal:
- Set sum \(=\) last digit.
- Multiply next digit by \(2=2^{1}\). Add to sum.
- Multiply next digit by \(4=2^{2}\). Add to sum.
- Multiply next digit by \(8=2^{3}\). Add to sum.
- Multiply next digit by \(16=2^{4}\). Add to sum.

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- From binary to decimal:
- Set sum = last digit.
- Multiply next digit by \(2=2^{1}\). Add to sum.
- Multiply next digit by \(4=2^{2}\). Add to sum.
- Multiply next digit by \(8=2^{3}\). Add to sum.
- Multiply next digit by \(16=2^{4}\). Add to sum.
- Multiply next digit by \(32=2^{5}\). Add to sum.

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+\mathbf{1 \times 8 + 1 \times 1 = 1 6 + 8 + 1 = 2 5}\)
- From binary to decimal:
- Set sum = last digit.
- Multiply next digit by \(2=2^{1}\). Add to sum.
- Multiply next digit by \(4=2^{2}\). Add to sum.
- Multiply next digit by \(8=2^{3}\). Add to sum.
- Multiply next digit by \(16=2^{4}\). Add to sum.
- Multiply next digit by \(32=2^{5}\). Add to sum.
- Multiply next digit by \(64=2^{6}\). Add to sum.

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+\mathbf{1 \times 8 + 1 \times 1 = 1 6 + 8 + 1 = 2 5}\)
- From binary to decimal:
- Set sum = last digit.
- Multiply next digit by \(2=2^{1}\). Add to sum.
- Multiply next digit by \(4=2^{2}\). Add to sum.
- Multiply next digit by \(8=2^{3}\). Add to sum.
- Multiply next digit by \(16=2^{4}\). Add to sum.
- Multiply next digit by \(32=2^{5}\). Add to sum.
- Multiply next digit by \(64=2^{6}\). Add to sum.
- Multiply next digit by \(128=2^{7}\). Add to sum.

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+\mathbf{1 \times 8}+\mathbf{1 \times 1}=\mathbf{1 6 + 8 + 1}=\mathbf{2 5}\)
- From binary to decimal:
- Set sum \(=\) last digit.
- Multiply next digit by \(2=2^{1}\). Add to sum.
- Multiply next digit by \(4=2^{2}\). Add to sum.
- Multiply next digit by \(8=2^{3}\). Add to sum.
- Multiply next digit by \(16=2^{4}\). Add to sum.
- Multiply next digit by \(32=2^{5}\). Add to sum.
- Multiply next digit by \(64=2^{6}\). Add to sum.
- Multiply next digit by \(128=2^{7}\). Add to sum.
- Sum is the decimal number.

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+\mathbf{1 \times 8}+\mathbf{1 \times 1}=\mathbf{1 6 + 8 + 1}=\mathbf{2 5}\)
- From binary to decimal:
- Set sum \(=\) last digit.
- Multiply next digit by \(2=2^{1}\). Add to sum.
- Multiply next digit by \(4=2^{2}\). Add to sum.
- Multiply next digit by \(8=2^{3}\). Add to sum.
- Multiply next digit by \(16=2^{4}\). Add to sum.
- Multiply next digit by \(32=2^{5}\). Add to sum.
- Multiply next digit by \(64=2^{6}\). Add to sum.
- Multiply next digit by \(128=2^{7}\). Add to sum.
- Sum is the decimal number.
- Example: What is 111101 in decimal?

Sum starts with:

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+\mathbf{1 \times 8}+\mathbf{1 \times 1}=\mathbf{1 6 + 8 + 1}=\mathbf{2 5}\)
- From binary to decimal:
- Set sum \(=\) last digit.
- Multiply next digit by \(2=2^{1}\). Add to sum.
- Multiply next digit by \(4=2^{2}\). Add to sum.
- Multiply next digit by \(8=2^{3}\). Add to sum.
- Multiply next digit by \(16=2^{4}\). Add to sum.
- Multiply next digit by \(32=2^{5}\). Add to sum.
- Multiply next digit by \(64=2^{6}\). Add to sum.
- Multiply next digit by \(128=2^{7}\). Add to sum.
- Sum is the decimal number.
- Example: What is 111101 in decimal?
```

Sum starts with:
1

```
\(0 * 2=0\). Add 0 to sum:

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+\mathbf{1 \times 8}+\mathbf{1 \times 1}=\mathbf{1 6 + 8 + 1}=\mathbf{2 5}\)
- From binary to decimal:
- Set sum \(=\) last digit.
- Multiply next digit by \(2=2^{1}\). Add to sum.
- Multiply next digit by \(4=2^{2}\). Add to sum.
- Multiply next digit by \(8=2^{3}\). Add to sum.
- Multiply next digit by \(16=2^{4}\). Add to sum.
- Multiply next digit by \(32=2^{5}\). Add to sum.
- Multiply next digit by \(64=2^{6}\). Add to sum.
- Multiply next digit by \(128=2^{7}\). Add to sum.
- Sum is the decimal number.
- Example: What is 111101 in decimal?
```

Sum starts with: 1
0*2 = 0. Add 0 to sum: 1

```

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+\mathbf{1 \times 8}+\mathbf{1 \times 1}=\mathbf{1 6 + 8 + 1}=\mathbf{2 5}\)
- From binary to decimal:
- Set sum \(=\) last digit.
- Multiply next digit by \(2=2^{1}\). Add to sum.
- Multiply next digit by \(4=2^{2}\). Add to sum.
- Multiply next digit by \(8=2^{3}\). Add to sum.
- Multiply next digit by \(16=2^{4}\). Add to sum.
- Multiply next digit by \(32=2^{5}\). Add to sum.
- Multiply next digit by \(64=2^{6}\). Add to sum.
- Multiply next digit by \(128=2^{7}\). Add to sum.
- Sum is the decimal number.
- Example: What is 111101 in decimal?
```

Sum starts with: 1

```
\(0 * 2=0\). Add 0 to sum: 1
\(1 * 4=4\). Add 4 to sum:

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+\mathbf{1 \times 8}+\mathbf{1 \times 1}=\mathbf{1 6 + 8 + 1}=\mathbf{2 5}\)
- From binary to decimal:
- Set sum \(=\) last digit.
- Multiply next digit by \(2=2^{1}\). Add to sum.
- Multiply next digit by \(4=2^{2}\). Add to sum.
- Multiply next digit by \(8=2^{3}\). Add to sum.
- Multiply next digit by \(16=2^{4}\). Add to sum.
- Multiply next digit by \(32=2^{5}\). Add to sum.
- Multiply next digit by \(64=2^{6}\). Add to sum.
- Multiply next digit by \(128=2^{7}\). Add to sum.
- Sum is the decimal number.
- Example: What is 111101 in decimal?
```

Sum starts with: 1
0*2 = 0. Add 0 to sum: 1

```
\(1 * 4=4\). Add 4 to sum: 5

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+\mathbf{1 \times 8}+\mathbf{1 \times 1}=\mathbf{1 6 + 8 + 1}=\mathbf{2 5}\)
- From binary to decimal:
- Set sum \(=\) last digit.
- Multiply next digit by \(2=2^{1}\). Add to sum.
- Multiply next digit by \(4=2^{2}\). Add to sum.
- Multiply next digit by \(8=2^{3}\). Add to sum.
- Multiply next digit by \(16=2^{4}\). Add to sum.
- Multiply next digit by \(32=2^{5}\). Add to sum.
- Multiply next digit by \(64=2^{6}\). Add to sum.
- Multiply next digit by \(128=2^{7}\). Add to sum.
- Sum is the decimal number.
- Example: What is 111101 in decimal?
```

Sum starts with: 1

```
\(0 * 2=0\). Add 0 to sum: 1
\(1 * 4=4\). Add 4 to sum: 5
\(1 * 8=8\). Add 8 to sum:

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+\mathbf{1 \times 8}+\mathbf{1 \times 1}=\mathbf{1 6 + 8 + 1}=\mathbf{2 5}\)
- From binary to decimal:
- Set sum \(=\) last digit.
- Multiply next digit by \(2=2^{1}\). Add to sum.
- Multiply next digit by \(4=2^{2}\). Add to sum.
- Multiply next digit by \(8=2^{3}\). Add to sum.
- Multiply next digit by \(16=2^{4}\). Add to sum.
- Multiply next digit by \(32=2^{5}\). Add to sum.
- Multiply next digit by \(64=2^{6}\). Add to sum.
- Multiply next digit by \(128=2^{7}\). Add to sum.
- Sum is the decimal number.
- Example: What is 111101 in decimal?
```

Sum starts with: 1

```
\(0 * 2=0\). Add 0 to sum: 1
\(1 * 4=4\). Add 4 to sum: 5
\(1 * 8=8\). Add 8 to sum: 13

\section*{Binary to Decimal: Converting Between Bases}


\section*{}


Example: \(1 \times 16+\mathbf{1 \times 8}+\mathbf{1 \times 1}=\mathbf{1 6 + 8 + 1}=\mathbf{2 5}\)
- From binary to decimal:
- Set sum = last digit.
- Multiply next digit by \(2=2^{1}\). Add to sum.
- Multiply next digit by \(4=2^{2}\). Add to sum.
- Multiply next digit by \(8=2^{3}\). Add to sum.
- Multiply next digit by \(16=2^{4}\). Add to sum.
- Multiply next digit by \(32=2^{5}\). Add to sum.
- Multiply next digit by \(64=2^{6}\). Add to sum.
- Multiply next digit by \(128=2^{7}\). Add to sum.
- Sum is the decimal number.
- Example: What is 111101 in decimal?
```

Sum starts with: 1

```
\(0 * 2=0\). Add 0 to sum: 1
\(1 * 4=4\). Add 4 to sum: 5
\(1 * 8=8\). Add 8 to sum: 13
\(1 * 16=16\). Add 16 to sum:

\section*{Binary to Decimal: Converting Between Bases}


\section*{}


Example: \(1 \times 16+\mathbf{1 \times 8}+\mathbf{1 \times 1}=\mathbf{1 6 + 8 + 1}=\mathbf{2 5}\)
- From binary to decimal:
- Set sum = last digit.
- Multiply next digit by \(2=2^{1}\). Add to sum.
- Multiply next digit by \(4=2^{2}\). Add to sum.
- Multiply next digit by \(8=2^{3}\). Add to sum.
- Multiply next digit by \(16=2^{4}\). Add to sum.
- Multiply next digit by \(32=2^{5}\). Add to sum.
- Multiply next digit by \(64=2^{6}\). Add to sum.
- Multiply next digit by \(128=2^{7}\). Add to sum.
- Sum is the decimal number.
- Example: What is 111101 in decimal?
```

Sum starts with: 1
0*2 = 0. Add 0 to sum: 1
1*4 = 4. Add 4 to sum: 5
1*8 = 8. Add 8 to sum: 13
1*16 = 16. Add 16 to sum: }2

```

\section*{Binary to Decimal: Converting Between Bases}


\section*{}


Example: \(1 \times 16+\mathbf{1 \times 8}+\mathbf{1 \times 1}=\mathbf{1 6 + 8 + 1}=\mathbf{2 5}\)
- From binary to decimal:
- Set sum = last digit.
- Multiply next digit by \(2=2^{1}\). Add to sum.
- Multiply next digit by \(4=2^{2}\). Add to sum.
- Multiply next digit by \(8=2^{3}\). Add to sum.
- Multiply next digit by \(16=2^{4}\). Add to sum.
- Multiply next digit by \(32=2^{5}\). Add to sum.
- Multiply next digit by \(64=2^{6}\). Add to sum.
- Multiply next digit by \(128=2^{7}\). Add to sum.
- Sum is the decimal number.
- Example: What is 111101 in decimal?
```

Sum starts with: 1
0*2 = 0. Add 0 to sum: 1
1*4 = 4. Add 4 to sum: 5
1*8 = 8. Add 8 to sum: 13
1*16 = 16. Add 16 to sum: 29
1*32 = 32. Add 32 to sum:

```

\section*{Binary to Decimal: Converting Between Bases}


\section*{}


Example: \(1 \times 16+\mathbf{1 \times 8}+\mathbf{1 \times 1}=\mathbf{1 6 + 8 + 1}=\mathbf{2 5}\)
- From binary to decimal:
- Set sum = last digit.
- Multiply next digit by \(2=2^{1}\). Add to sum.
- Multiply next digit by \(4=2^{2}\). Add to sum.
- Multiply next digit by \(8=2^{3}\). Add to sum.
- Multiply next digit by \(16=2^{4}\). Add to sum.
- Multiply next digit by \(32=2^{5}\). Add to sum.
- Multiply next digit by \(64=2^{6}\). Add to sum.
- Multiply next digit by \(128=2^{7}\). Add to sum.
- Sum is the decimal number.
- Example: What is 111101 in decimal?
```

Sum starts with: 1
0*2 = 0. Add 0 to sum: 1
1*4 = 4. Add 4 to sum: 5
1*8 = 8. Add 8 to sum: 13
1*16 = 16. Add 16 to sum: 29
1*32 = 32. Add 32 to sum: 61

```

\section*{Binary to Decimal: Converting Between Bases}


\section*{目 ㅁ}


Example: \(1 \times 16+\mathbf{1 \times 8}+\mathbf{1 \times 1}=\mathbf{1 6 + 8 + 1}=\mathbf{2 5}\)
- From binary to decimal:
- Set sum = last digit.
- Multiply next digit by \(2=2^{1}\). Add to sum.
- Multiply next digit by \(4=2^{2}\). Add to sum.
- Multiply next digit by \(8=2^{3}\). Add to sum.
- Multiply next digit by \(16=2^{4}\). Add to sum.
- Multiply next digit by \(32=2^{5}\). Add to sum.
- Multiply next digit by \(64=2^{6}\). Add to sum.
- Multiply next digit by \(128=2^{7}\). Add to sum.
- Sum is the decimal number.
- Example: What is 111101 in decimal?
```

Sum starts with: 1
0*2 = 0. Add 0 to sum: 1
1*4 = 4. Add 4 to sum: 5
1*8 = 8. Add 8 to sum: 13
1*16 = 16. Add 16 to sum: 29
1*32 = 32. Add 32 to sum: 61

```

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: What is 10100100 in decimal?

Sum starts with:

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: What is 10100100 in decimal?
Sum starts with:
\[
0
\]
\[
0 * 2=0 . \quad \text { Add } 0 \text { to sum }:
\]

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: What is 10100100 in decimal?
\[
\begin{array}{ll}
\text { Sum starts with: } & 0 \\
0 * 2=0 . ~ A d d ~ 0 ~ t o ~ s u m: ~ & 0
\end{array}
\]

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: What is 10100100 in decimal?
\[
\begin{array}{ll}
\text { Sum starts with: } & 0 \\
0 * 2=0 . \text { Add } 0 \text { to sum: } & 0 \\
1 * 4=4 . \text { Add } 4 \text { to sum: } &
\end{array}
\]

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: What is 10100100 in decimal?
\[
\begin{array}{ll}
\text { Sum starts with: } & 0 \\
0 * 2=0 . \text { Add } 0 \text { to sum: } & 0 \\
1 * 4=4 . \text { Add } 4 \text { to sum: } & 4
\end{array}
\]

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: What is 10100100 in decimal?
\[
\begin{array}{ll}
\text { Sum starts with: } & 0 \\
0 * 2=0 . \text { Add } 0 \text { to sum: } & 0 \\
1 * 4=4 . \text { Add } 4 \text { to sum: } & 4 \\
0 * 8=0 . & \text { Add } 0 \text { to sum: }
\end{array}
\]

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: What is 10100100 in decimal?
\[
\begin{array}{ll}
\text { Sum starts with }: & 0 \\
0 * 2=0 . \text { Add } 0 \text { to sum: } & 0 \\
1 * 4=4 . \text { Add } 4 \text { to sum: } & 4 \\
0 * 8=0 . & \text { Add } 0 \text { to sum: }
\end{array}
\]

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: What is 10100100 in decimal?
\[
\begin{array}{ll}
\text { Sum starts with }: & 0 \\
0 * 2=0 . \text { Add } 0 \text { to sum: } & 0 \\
1 * 4=4 . \text { Add } 4 \text { to sum: } & 4 \\
0 * 8=0 . \text { Add } 0 \text { to sum: } & 4 \\
0 * 16=0 . \text { Add } 0 \text { to sum: } &
\end{array}
\]
\[
0
\]

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: What is 10100100 in decimal?
\[
\begin{array}{ll}
\text { Sum starts with }: & 0 \\
0 * 2=0 . \text { Add } 0 \text { to sum: } & 0 \\
1 * 4=4 . \text { Add } 4 \text { to sum: } & 4 \\
0 * 8=0 . \text { Add } 0 \text { to sum: } & 4 \\
0 * 16=0 . \text { Add } 0 \text { to sum: } & 4
\end{array}
\]

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: What is 10100100 in decimal?
\[
\begin{array}{ll}
\text { Sum starts with }: & 0 \\
0 * 2=0 . \text { Add } 0 \text { to sum: } & 0 \\
1 * 4=4 . \text { Add } 4 \text { to sum: } & 4 \\
0 * 8=0 . \text { Add } 0 \text { to sum: } & 4 \\
0 * 16=0 . \text { Add } 0 \text { to sum: } & 4 \\
1 * 32=32 . \text { Add } 32 \text { to sum: } &
\end{array}
\]

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: What is 10100100 in decimal?
\[
\begin{array}{ll}
\text { Sum starts with: } & 0 \\
0 * 2=0 . \text { Add } 0 \text { to sum: } & 0 \\
1 * 4=4 . \text { Add } 4 \text { to sum: } & 4 \\
0 * 8=0 . \text { Add } 0 \text { to sum: } & 4 \\
0 * 16=0 . \text { Add } 0 \text { to sum: } & 4 \\
1 * 32=32 . ~ A d d ~ & 32 \text { to sum: }
\end{array}
\]

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: What is 10100100 in decimal?
\[
\begin{array}{ll}
\text { Sum starts with: } & 0 \\
0 * 2=0 . \text { Add } 0 \text { to sum: } & 0 \\
1 * 4=4 . \text { Add } 4 \text { to sum: } & 4 \\
0 * 8=0 . \text { Add } 0 \text { to sum: } & 4 \\
0 * 16=0 . \text { Add } 0 \text { to sum: } & 4 \\
1 * 32=32 . \text { Add } 32 \text { to sum: } & 36 \\
0 * 64=0 . & \text { Add } 0 \text { to sum: }
\end{array}
\]

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: What is 10100100 in decimal?
\[
\begin{array}{ll}
\text { Sum starts with }: & 0 \\
0 * 2=0 . \text { Add } 0 \text { to sum: } & 0 \\
1 * 4=4 . \text { Add } 4 \text { to sum: } & 4 \\
0 * 8=0 . \text { Add } 0 \text { to sum: } & 4 \\
0 * 16=0 . \text { Add } 0 \text { to sum: } & 4 \\
1 * 32=32 . \text { Add } 32 \text { to sum: } & 36 \\
0 * 64=0 . \text { Add } 0 \text { to sum: } & 36
\end{array}
\]

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: What is 10100100 in decimal?
\[
\begin{array}{ll}
\text { Sum starts with: } & 0 \\
0 * 2=0 . \text { Add } 0 \text { to sum: } & 0 \\
1 * 4=4 . \text { Add } 4 \text { to sum: } & 4 \\
0 * 8=0 . \text { Add } 0 \text { to sum: } & 4 \\
0 * 16=0 . \text { Add } 0 \text { to sum: } & 4 \\
1 * 32=32 . \text { Add } 32 \text { to sum: } & 36 \\
0 * 64=0 . \text { Add } 0 \text { to sum: } & 36 \\
1 * 128=0 . ~ A d d ~ & 128 \text { to sum: }
\end{array}
\]

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: What is 10100100 in decimal?
\[
\begin{array}{ll}
\text { Sum starts with }: & 0 \\
0 * 2=0 . \quad \text { Add } 0 \text { to sum: } & 0 \\
1 * 4=4 . \quad \text { Add } 4 \text { to sum: } & 4 \\
0 * 8=0 . \quad \text { Add } 0 \text { to sum: } & 4 \\
0 * 16=0 . \quad \text { Add } 0 \text { to sum: } & 4 \\
1 * 32=32 . \quad \text { Add } 32 \text { to sum: } & 36 \\
0 * 64=0 . \quad \text { Add } 0 \text { to sum: } & 36 \\
1 * 128=0 . \quad \text { Add } 128 \text { to sum: } & 164
\end{array}
\]

\section*{Binary to Decimal: Converting Between Bases}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Example: What is 10100100 in decimal?
\[
\begin{array}{ll}
\text { Sum starts with }: & 0 \\
0 * 2=0 . \quad \text { Add } 0 \text { to sum: } & 0 \\
1 * 4=4 . \quad \text { Add } 4 \text { to sum: } & 4 \\
0 * 8=0 . \quad \text { Add } 0 \text { to sum: } & 4 \\
0 * 16=0 . \quad \text { Add } 0 \text { to sum: } & 4 \\
1 * 32=32 . \quad \text { Add } 32 \text { to sum: } & 36 \\
0 * 64=0 . \quad \text { Add } 0 \text { to sum: } & 36 \\
1 * 128=0 . \quad \text { Add } 128 \text { to sum: } & 164
\end{array}
\]

The answer is 164 .

\section*{Design Challenge: Incrementers}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Simplest arithmetic: add one ("increment") a variable.

\section*{Design Challenge: Incrementers}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Simplest arithmetic: add one ("increment") a variable.
- Example: Increment a decimal number:

\section*{Design Challenge: Incrementers}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Simplest arithmetic: add one ("increment") a variable.
- Example: Increment a decimal number:
\[
\begin{aligned}
\text { def } & \text { addOne }(\mathrm{n}): \\
& \mathrm{m}=\mathrm{n}+1 \\
& \operatorname{return}(\mathrm{~m})
\end{aligned}
\]

\section*{Design Challenge: Incrementers}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Simplest arithmetic: add one ("increment") a variable.
- Example: Increment a decimal number:
\[
\begin{aligned}
\text { def } & \text { addOne }(\mathrm{n}): \\
& \mathrm{m}=\mathrm{n}+1 \\
& \operatorname{return}(\mathrm{~m})
\end{aligned}
\]
- Challenge: Write an algorithm for incrementing numbers expressed as words.

\section*{Design Challenge: Incrementers}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Simplest arithmetic: add one ("increment") a variable.
- Example: Increment a decimal number:
\[
\begin{aligned}
\text { def } & \text { addOne }(\mathrm{n}): \\
& \mathrm{m}=\mathrm{n}+1 \\
& \operatorname{return}(\mathrm{~m})
\end{aligned}
\]
- Challenge: Write an algorithm for incrementing numbers expressed as words. Example: "forty one" \(\rightarrow\) "forty two"

\section*{Design Challenge: Incrementers}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Simplest arithmetic: add one ("increment") a variable.
- Example: Increment a decimal number:
\[
\begin{aligned}
\text { def } & \text { addOne }(\mathrm{n}): \\
& \mathrm{m}=\mathrm{n}+1 \\
& \operatorname{return}(\mathrm{~m})
\end{aligned}
\]
- Challenge: Write an algorithm for incrementing numbers expressed as words.

Example: "forty one" \(\rightarrow\) "forty two"
Hint: Convert to numbers, increment, and convert back to strings.

\section*{Design Challenge: Incrementers}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Simplest arithmetic: add one ("increment") a variable.
- Example: Increment a decimal number:
\[
\begin{aligned}
\text { def } & \text { addOne }(\mathrm{n}): \\
& \mathrm{m}=\mathrm{n}+1 \\
& \operatorname{return}(\mathrm{~m})
\end{aligned}
\]
- Challenge: Write an algorithm for incrementing numbers expressed as words. Example: "forty one" \(\rightarrow\) "forty two" Hint: Convert to numbers, increment, and convert back to strings.
- Challenge: Write an algorithm for incrementing binary numbers.

\section*{Design Challenge: Incrementers}


Example: \(1 \times 16+1 \times 8+1 \times 1=16+8+1=25\)
- Simplest arithmetic: add one ("increment") a variable.
- Example: Increment a decimal number:
\[
\begin{aligned}
\text { def } & \text { addOne }(\mathrm{n}): \\
& \mathrm{m}=\mathrm{n}+1 \\
& \operatorname{return}(\mathrm{~m})
\end{aligned}
\]
- Challenge: Write an algorithm for incrementing numbers expressed as words. Example: "forty one" \(\rightarrow\) "forty two" Hint: Convert to numbers, increment, and convert back to strings.
- Challenge: Write an algorithm for incrementing binary numbers.

Example: "1001" \(\rightarrow\) "1010"

\section*{Recap}
- Searching through data is a common task- built-in functions and standard design patterns for this.

\section*{Recap}

- Searching through data is a common task- built-in functions and standard design patterns for this.
- Programming languages can be classified by the level of abstraction and direct access to data.

\section*{Recap}

- Searching through data is a common task- built-in functions and standard design patterns for this.
- Programming languages can be classified by the level of abstraction and direct access to data.
- WeMIPS simplified machine language

\section*{Recap}

- Searching through data is a common task- built-in functions and standard design patterns for this.
- Programming languages can be classified by the level of abstraction and direct access to data.
- WeMIPS simplified machine language
- Converting between Bases

\section*{Final Overview: Format}
- The exam is 2 hours long.

\section*{Final Overview: Format}
- The exam is 2 hours long.
- It is on paper. No use of computers, phones, etc. allowed.

\section*{Final Overview: Format}
- The exam is 2 hours long.
- It is on paper. No use of computers, phones, etc. allowed.
- You may have 1 piece of \(\mathbf{8 . 5}\) " \(\times \mathbf{1 1 "}\) piece of paper.

\section*{Final Overview: Format}
- The exam is 2 hours long.
- It is on paper. No use of computers, phones, etc. allowed.
- You may have 1 piece of \(\mathbf{8 . 5}\) " \(\times \mathbf{1 1 "}\) piece of paper.
- With notes, examples, programs: what will help you on the exam.

\section*{Final Overview: Format}
- The exam is 2 hours long.
- It is on paper. No use of computers, phones, etc. allowed.
- You may have 1 piece of \(\mathbf{8 . 5}\) " \(\times \mathbf{1 1 "}\) piece of paper.
- With notes, examples, programs: what will help you on the exam.
- Do not fold the paper; it's distracting to others taking the exam.

\section*{Final Overview: Format}
- The exam is 2 hours long.
- It is on paper. No use of computers, phones, etc. allowed.
- You may have 1 piece of \(\mathbf{8 . 5}\) " \(\times \mathbf{1 1 "}\) piece of paper.
- With notes, examples, programs: what will help you on the exam.
- Do not fold the paper; it's distracting to others taking the exam.
- Best if you design/write your own as it's an excellent way to study.

\section*{Final Overview: Format}
- The exam is 2 hours long.
- It is on paper. No use of computers, phones, etc. allowed.
- You may have 1 piece of \(\mathbf{8 . 5}\) " \(\times \mathbf{1 1 "}\) piece of paper.
- With notes, examples, programs: what will help you on the exam.
- Do not fold the paper; it's distracting to others taking the exam.
- Best if you design/write your own as it's an excellent way to study.
- The exam format:

\section*{Final Overview: Format}
- The exam is 2 hours long.
- It is on paper. No use of computers, phones, etc. allowed.
- You may have 1 piece of \(\mathbf{8 . 5}\) " \(\times \mathbf{1 1 "}\) piece of paper.
- With notes, examples, programs: what will help you on the exam.
- Do not fold the paper; it's distracting to others taking the exam.
- Best if you design/write your own as it's an excellent way to study.
- The exam format:
- 10 questions, each worth 10 points.

\section*{Final Overview: Format}
- The exam is 2 hours long.
- It is on paper. No use of computers, phones, etc. allowed.
- You may have 1 piece of \(\mathbf{8 . 5 "} \times \mathbf{1 1 "}\) piece of paper.
- With notes, examples, programs: what will help you on the exam.
- Do not fold the paper; it's distracting to others taking the exam.
- Best if you design/write your own as it's an excellent way to study.
- The exam format:
- 10 questions, each worth 10 points.
- Questions correspond to the course topics, and are variations on the programming assignments, lab exercises, and lecture design challenges.

\section*{Final Overview: Format}
- The exam is 2 hours long.
- It is on paper. No use of computers, phones, etc. allowed.
- You may have 1 piece of \(\mathbf{8 . 5 "} \times \mathbf{1 1 "}\) piece of paper.
- With notes, examples, programs: what will help you on the exam.
- Do not fold the paper; it's distracting to others taking the exam.
- Best if you design/write your own as it's an excellent way to study.
- The exam format:
- 10 questions, each worth 10 points.
- Questions correspond to the course topics, and are variations on the programming assignments, lab exercises, and lecture design challenges.
- Style of questions: what does the code do? short answer, write functions, top-down design, \& write complete programs.

\section*{Final Overview: Format}
- The exam is 2 hours long.
- It is on paper. No use of computers, phones, etc. allowed.
- You may have 1 piece of \(\mathbf{8 . 5 "} \times \mathbf{1 1 "}\) piece of paper.
- With notes, examples, programs: what will help you on the exam.
- Do not fold the paper; it's distracting to others taking the exam.
- Best if you design/write your own as it's an excellent way to study.
- The exam format:
- 10 questions, each worth 10 points.
- Questions correspond to the course topics, and are variations on the programming assignments, lab exercises, and lecture design challenges.
- Style of questions: what does the code do? short answer, write functions, top-down design, \& write complete programs.
- More on logistics next lecture.

\section*{Final Overview: Format}
- The exam is 2 hours long.
- It is on paper. No use of computers, phones, etc. allowed.
- You may have 1 piece of \(\mathbf{8 . 5 "} \times \mathbf{1 1 "}\) piece of paper.
- With notes, examples, programs: what will help you on the exam.
- Do not fold the paper; it's distracting to others taking the exam.
- Best if you design/write your own as it's an excellent way to study.
- The exam format:
- 10 questions, each worth 10 points.
- Questions correspond to the course topics, and are variations on the programming assignments, lab exercises, and lecture design challenges.
- Style of questions: what does the code do? short answer, write functions, top-down design, \& write complete programs.
- More on logistics next lecture.
- Past exams available on the webpage (includes answer keys).

\section*{Exam Options}

\section*{Exam Times:}

Exan Ruber
- - Cor



п. -2


\section*{Exam Options}


Exam Times:
- Regular Time: Monday, May 22 in Assembly Hall, 9-11 am.

\section*{Exam Options}

Fixal Exam, Veheon 3
 to pocule. sin

Exmn Ruber




\section*{Exam Times:}
- Regular Time: Monday, May 22 in Assembly Hall, 9-11 am.
- Alternate Time: Wednesday, May 17 in 1001G Hunter North, (time TBD).

\section*{Exam Options}

Fixal Exan, Vehson 3



Exmu Ruber




\section*{Exam Times:}
- Regular Time: Monday, May 22 in Assembly Hall, 9-11 am.
- Alternate Time: Wednesday, May 17 in 1001G Hunter North, (time TBD).
- Survey for your exam date choice will be available next lecture.

\section*{Exam Options}

Fixal Exan, Veinson 3 Csa 127 Introdution to Computio Stuens.
Hunter Colluge. Cty Universty of New Yock to poculen yin


Exam Times:
- Regular Time: Monday, May 22 in Assembly Hall, 9-11 am.
- Alternate Time: Wednesday, May 17 in 1001G Hunter North, (time TBD).
- Survey for your exam date choice will be available next lecture.
- If you choose to take the early date, you will not be given access to the exam on May 22, even if you miss the early exam.

\section*{Weekly Reminders!}


Before the next lecture, don't forget to:
- Work on this week's Online Lab

\section*{Weekly Reminders!}


Before the next lecture, don't forget to:
- Work on this week's Online Lab
- Schedule an appointment to take the Quiz

\section*{Weekly Reminders!}


Before the next lecture, don't forget to:
- Work on this week's Online Lab
- Schedule an appointment to take the Quiz
- Schedule an appointment to take the Code Review

\section*{Weekly Reminders!}


Before the next lecture, don't forget to:
- Work on this week's Online Lab
- Schedule an appointment to take the Quiz
- Schedule an appointment to take the Code Review
- Submit this week's programming assignments

\section*{Weekly Reminders!}


Before the next lecture, don't forget to:
- Work on this week's Online Lab
- Schedule an appointment to take the Quiz
- Schedule an appointment to take the Code Review
- Submit this week's programming assignments
- If you need help, schedule an appointment for Tutoring

\section*{Weekly Reminders!}


Before the next lecture, don't forget to:
- Work on this week's Online Lab
- Schedule an appointment to take the Quiz
- Schedule an appointment to take the Code Review
- Submit this week's programming assignments
- If you need help, schedule an appointment for Tutoring
- Take the Lecture Preview on Blackboard

\section*{Lecture Slips \& Writing Boards}

- Hand your lecture slip to a UTA.
- Return writing boards as you leave.```

